MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbibi Structured version   Visualization version   GIF version

Theorem imbibi 393
Description: The antecedent of one side of a biconditional can be moved out of the biconditional to become the antecedent of the remaining biconditional. (Contributed by BJ, 1-Jan-2025.) (Proof shortened by Wolf Lammen, 5-Jan-2025.)
Assertion
Ref Expression
imbibi (((𝜑𝜓) ↔ 𝜒) → (𝜑 → (𝜓𝜒)))

Proof of Theorem imbibi
StepHypRef Expression
1 pm5.4 390 . . 3 ((𝜑 → (𝜑𝜓)) ↔ (𝜑𝜓))
2 imbi2 349 . . 3 (((𝜑𝜓) ↔ 𝜒) → ((𝜑 → (𝜑𝜓)) ↔ (𝜑𝜒)))
31, 2bitr3id 285 . 2 (((𝜑𝜓) ↔ 𝜒) → ((𝜑𝜓) ↔ (𝜑𝜒)))
43pm5.74rd 274 1 (((𝜑𝜓) ↔ 𝜒) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  snssg  4723
  Copyright terms: Public domain W3C validator