Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-6frege Structured version   Visualization version   GIF version

Theorem rp-6frege 41273
Description: Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
rp-6frege (𝜑 → ((𝜓 → ((𝜒𝜓) → 𝜃)) → (𝜓𝜃)))

Proof of Theorem rp-6frege
StepHypRef Expression
1 rp-4frege 41272 . 2 ((𝜓 → ((𝜒𝜓) → 𝜃)) → (𝜓𝜃))
2 ax-frege1 41260 . 2 (((𝜓 → ((𝜒𝜓) → 𝜃)) → (𝜓𝜃)) → (𝜑 → ((𝜓 → ((𝜒𝜓) → 𝜃)) → (𝜓𝜃))))
31, 2ax-mp 5 1 (𝜑 → ((𝜓 → ((𝜒𝜓) → 𝜃)) → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41260  ax-frege2 41261
This theorem is referenced by:  rp-8frege  41274
  Copyright terms: Public domain W3C validator