| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-4frege | Structured version Visualization version GIF version | ||
| Description: Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| rp-4frege | ⊢ ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rp-simp2-frege 43746 | . 2 ⊢ ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → (𝜓 → 𝜑))) | |
| 2 | rp-misc1-frege 43750 | . 2 ⊢ (((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → (𝜓 → 𝜑))) → ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43744 ax-frege2 43745 |
| This theorem is referenced by: rp-6frege 43757 |
| Copyright terms: Public domain | W3C validator |