Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-4frege Structured version   Visualization version   GIF version

Theorem rp-4frege 41272
Description: Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
rp-4frege ((𝜑 → ((𝜓𝜑) → 𝜒)) → (𝜑𝜒))

Proof of Theorem rp-4frege
StepHypRef Expression
1 rp-simp2-frege 41262 . 2 ((𝜑 → ((𝜓𝜑) → 𝜒)) → (𝜑 → (𝜓𝜑)))
2 rp-misc1-frege 41266 . 2 (((𝜑 → ((𝜓𝜑) → 𝜒)) → (𝜑 → (𝜓𝜑))) → ((𝜑 → ((𝜓𝜑) → 𝜒)) → (𝜑𝜒)))
31, 2ax-mp 5 1 ((𝜑 → ((𝜓𝜑) → 𝜒)) → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41260  ax-frege2 41261
This theorem is referenced by:  rp-6frege  41273
  Copyright terms: Public domain W3C validator