Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-frege4g Structured version   Visualization version   GIF version

Theorem rp-frege4g 40907
Description: Deduction related to distribution. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
rp-frege4g ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → ((𝜓𝜒) → (𝜓𝜃))))

Proof of Theorem rp-frege4g
StepHypRef Expression
1 rp-frege3g 40903 . 2 (𝜑 → ((𝜓 → (𝜒𝜃)) → ((𝜓𝜒) → (𝜓𝜃))))
2 ax-frege2 40900 . 2 ((𝜑 → ((𝜓 → (𝜒𝜃)) → ((𝜓𝜒) → (𝜓𝜃)))) → ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → ((𝜓𝜒) → (𝜓𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 40899  ax-frege2 40900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator