Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-frege4g | Structured version Visualization version GIF version |
Description: Deduction related to distribution. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
rp-frege4g | ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rp-frege3g 41426 | . 2 ⊢ (𝜑 → ((𝜓 → (𝜒 → 𝜃)) → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) | |
2 | ax-frege2 41423 | . 2 ⊢ ((𝜑 → ((𝜓 → (𝜒 → 𝜃)) → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) → ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 41422 ax-frege2 41423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |