Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege4 Structured version   Visualization version   GIF version

Theorem frege4 41296
Description: Special case of closed form of a2d 29. Special case of rp-frege4g 41295. Proposition 4 of [Frege1879] p. 31. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege4 (((𝜑𝜓) → (𝜒 → (𝜑𝜓))) → ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓))))

Proof of Theorem frege4
StepHypRef Expression
1 frege3 41292 . 2 ((𝜑𝜓) → ((𝜒 → (𝜑𝜓)) → ((𝜒𝜑) → (𝜒𝜓))))
2 ax-frege2 41288 . 2 (((𝜑𝜓) → ((𝜒 → (𝜑𝜓)) → ((𝜒𝜑) → (𝜒𝜓)))) → (((𝜑𝜓) → (𝜒 → (𝜑𝜓))) → ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))))
31, 2ax-mp 5 1 (((𝜑𝜓) → (𝜒 → (𝜑𝜓))) → ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287  ax-frege2 41288
This theorem is referenced by:  frege5  41297
  Copyright terms: Public domain W3C validator