| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trubifal | Structured version Visualization version GIF version | ||
| Description: A ↔ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 10-Jul-2020.) |
| Ref | Expression |
|---|---|
| trubifal | ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . 2 ⊢ ((⊤ ↔ ⊥) ↔ (⊥ ↔ ⊤)) | |
| 2 | falbitru 1570 | . 2 ⊢ ((⊥ ↔ ⊤) ↔ ⊥) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 |
| This theorem is referenced by: truxorfal 1586 |
| Copyright terms: Public domain | W3C validator |