| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version | ||
| Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 221 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 2 | bicom1 221 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicomd 223 bibi1i 338 bibi1d 343 con2bi 353 ibibr 368 bibif 371 nbbn 383 biluk 385 biadan 818 pm5.17 1013 bigolden 1028 xorcom 1515 norass 1538 trubifal 1572 hadcoma 1600 eqabcbw 2805 eqabcb 2872 pm13.183 3616 ssequn1 4133 isocnv 7264 qextlt 13102 qextle 13103 rpnnen2lem12 16134 odd2np1 16252 sumodd 16299 nrmmetd 24489 lgsqrmodndvds 27291 eqelbid 32454 mgccnv 32980 cvmlift2lem12 35358 nn0prpw 36367 wl-3xorrot 37521 wl-3xorcoma 37522 tsbi4 38175 bicomdd 38952 onsupmaxb 43331 ifpbicor 43567 rp-fakeoranass 43606 or3or 44115 3impexpbicom 44572 3impexpbicomVD 44948 notbicom 45261 limsupreuz 45834 nabctnabc 47030 |
| Copyright terms: Public domain | W3C validator |