| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version | ||
| Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 221 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 2 | bicom1 221 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicomd 223 bibi1i 338 bibi1d 343 con2bi 353 ibibr 368 bibif 371 nbbn 383 biluk 385 biadan 818 pm5.17 1013 bigolden 1028 xorcom 1514 norass 1537 trubifal 1571 hadcoma 1599 eqabcb 2869 pm13.183 3621 ssequn1 4137 ab0w 4330 disj 4401 isocnv 7267 qextlt 13105 qextle 13106 rpnnen2lem12 16134 odd2np1 16252 sumodd 16299 nrmmetd 24460 lgsqrmodndvds 27262 eqelbid 32423 mgccnv 32950 cvmlift2lem12 35307 nn0prpw 36317 wl-3xorrot 37471 wl-3xorcoma 37472 tsbi4 38136 bicomdd 38853 onsupmaxb 43232 ifpbicor 43468 rp-fakeoranass 43507 or3or 44016 3impexpbicom 44474 3impexpbicomVD 44850 notbicom 45163 limsupreuz 45738 nabctnabc 46935 |
| Copyright terms: Public domain | W3C validator |