| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version | ||
| Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 221 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 2 | bicom1 221 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicomd 223 bibi1i 338 bibi1d 343 con2bi 353 ibibr 368 bibif 371 nbbn 383 biluk 385 biadan 818 pm5.17 1013 bigolden 1028 xorcom 1514 norass 1537 trubifal 1571 hadcoma 1599 eqabcb 2870 pm13.183 3635 ssequn1 4152 ab0w 4345 disj 4416 isocnv 7308 qextlt 13170 qextle 13171 rpnnen2lem12 16200 odd2np1 16318 sumodd 16365 nrmmetd 24469 lgsqrmodndvds 27271 eqelbid 32411 mgccnv 32932 cvmlift2lem12 35308 nn0prpw 36318 wl-3xorrot 37472 wl-3xorcoma 37473 tsbi4 38137 bicomdd 38854 onsupmaxb 43235 ifpbicor 43471 rp-fakeoranass 43510 or3or 44019 3impexpbicom 44477 3impexpbicomVD 44853 notbicom 45166 limsupreuz 45742 nabctnabc 46936 |
| Copyright terms: Public domain | W3C validator |