![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version |
Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 220 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 220 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bicomd 222 bibi1i 339 bibi1d 344 con2bi 354 ibibr 369 bibif 372 nbbn 385 biluk 387 biadan 818 pm5.17 1011 bigolden 1026 xorcom 1513 xorcomOLD 1514 norass 1539 trubifal 1573 hadcoma 1601 eqabcb 2876 ssequn1 4181 ab0w 4374 disj 4448 axpow3 5367 isocnv 7327 qextlt 13182 qextle 13183 rpnnen2lem12 16168 odd2np1 16284 sumodd 16331 nrmmetd 24083 lgsqrmodndvds 26856 eqelbid 31715 mgccnv 32169 cvmlift2lem12 34305 nn0prpw 35208 wl-3xorrot 36358 wl-3xorcoma 36359 tsbi4 37004 bicomdd 37724 onsupmaxb 41988 ifpbicor 42226 rp-fakeoranass 42265 or3or 42774 3impexpbicom 43240 3impexpbicomVD 43618 notbicom 43860 limsupreuz 44453 nabctnabc 45641 isomuspgrlem2b 46497 |
Copyright terms: Public domain | W3C validator |