| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version | ||
| Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 221 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 2 | bicom1 221 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicomd 223 bibi1i 338 bibi1d 343 con2bi 353 ibibr 368 bibif 371 nbbn 383 biluk 385 biadan 818 pm5.17 1013 bigolden 1028 xorcom 1514 norass 1537 trubifal 1571 hadcoma 1599 eqabcb 2876 pm13.183 3645 ssequn1 4161 ab0w 4354 disj 4425 isocnv 7323 qextlt 13219 qextle 13220 rpnnen2lem12 16243 odd2np1 16360 sumodd 16407 nrmmetd 24513 lgsqrmodndvds 27316 eqelbid 32456 mgccnv 32979 cvmlift2lem12 35336 nn0prpw 36341 wl-3xorrot 37495 wl-3xorcoma 37496 tsbi4 38160 bicomdd 38872 onsupmaxb 43263 ifpbicor 43499 rp-fakeoranass 43538 or3or 44047 3impexpbicom 44505 3impexpbicomVD 44881 notbicom 45189 limsupreuz 45766 nabctnabc 46960 |
| Copyright terms: Public domain | W3C validator |