Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version |
Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 220 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 220 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bicomd 222 bibi1i 338 bibi1d 343 con2bi 353 ibibr 368 bibif 371 nbbn 384 biluk 386 biadan 815 pm5.17 1008 bigolden 1023 xorcom 1506 xorcomOLD 1507 norass 1535 trubifal 1570 hadcoma 1601 abeq1 2872 ssequn1 4110 ab0w 4304 disj 4378 axpow3 5286 isocnv 7181 qextlt 12866 qextle 12867 rpnnen2lem12 15862 odd2np1 15978 sumodd 16025 nrmmetd 23636 lgsqrmodndvds 26406 mgccnv 31179 cvmlift2lem12 33176 xpord3ind 33727 nn0prpw 34439 wl-3xorrot 35575 wl-3xorcoma 35576 tsbi4 36221 bicomdd 36795 ifpbicor 40980 rp-fakeoranass 41019 or3or 41520 3impexpbicom 41988 3impexpbicomVD 42366 limsupreuz 43168 nabctnabc 44313 isomuspgrlem2b 45169 |
Copyright terms: Public domain | W3C validator |