| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version | ||
| Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 221 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 2 | bicom1 221 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicomd 223 bibi1i 338 bibi1d 343 con2bi 353 ibibr 368 bibif 371 nbbn 383 biluk 385 biadan 818 pm5.17 1013 bigolden 1028 xorcom 1514 norass 1537 trubifal 1571 hadcoma 1599 eqabcb 2869 pm13.183 3629 ssequn1 4145 ab0w 4338 disj 4409 isocnv 7287 qextlt 13139 qextle 13140 rpnnen2lem12 16169 odd2np1 16287 sumodd 16334 nrmmetd 24495 lgsqrmodndvds 27297 eqelbid 32454 mgccnv 32971 cvmlift2lem12 35294 nn0prpw 36304 wl-3xorrot 37458 wl-3xorcoma 37459 tsbi4 38123 bicomdd 38840 onsupmaxb 43221 ifpbicor 43457 rp-fakeoranass 43496 or3or 44005 3impexpbicom 44463 3impexpbicomVD 44839 notbicom 45152 limsupreuz 45728 nabctnabc 46925 |
| Copyright terms: Public domain | W3C validator |