Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version |
Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 224 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 224 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 212 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: bicomd 226 bibi1i 342 bibi1d 347 con2bi 357 ibibr 372 bibif 375 nbbn 388 biluk 390 biadan 818 pm5.17 1009 bigolden 1024 xorcom 1505 xorcomOLD 1506 norass 1534 trubifal 1569 hadcoma 1600 abeq1 2885 ssequn1 4087 disj 4347 axpow3 5240 isocnv 7082 qextlt 12642 qextle 12643 rpnnen2lem12 15631 odd2np1 15747 sumodd 15794 nrmmetd 23281 lgsqrmodndvds 26041 mgccnv 30807 cvmlift2lem12 32796 xpord3ind 33359 nn0prpw 34087 wl-3xorrot 35200 wl-3xorcoma 35201 tsbi4 35880 bicomdd 36456 ifpbicor 40584 rp-fakeoranass 40623 or3or 41125 3impexpbicom 41586 3impexpbicomVD 41964 limsupreuz 42773 nabctnabc 43918 isomuspgrlem2b 44742 |
Copyright terms: Public domain | W3C validator |