![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version |
Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 213 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 213 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 201 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: bicomd 215 bibi1i 331 bibi1d 336 con2bi 346 ibibr 361 bibif 364 nbbn 376 biluk 378 biadan 806 biadanOLD 807 pm5.17 994 bigolden 1009 xorcom 1491 trubifal 1538 euaeOLD 2693 abeq1 2892 ssequn1 4038 axpow3 5118 isocnv 6904 qextlt 12411 qextle 12412 rpnnen2lem12 15436 odd2np1 15548 sumodd 15597 nrmmetd 22899 lgsqrmodndvds 25643 cvmlift2lem12 32175 nn0prpw 33221 bj-abeq1 33635 tsbi4 34887 bicomdd 35464 ifpbicor 39266 rp-fakeoranass 39305 or3or 39763 3impexpbicom 40261 3impexpbicomVD 40639 limsupreuz 41474 nabctnabc 42622 isomuspgrlem2b 43387 |
Copyright terms: Public domain | W3C validator |