Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version |
Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 220 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 220 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bicomd 222 bibi1i 339 bibi1d 344 con2bi 354 ibibr 369 bibif 372 nbbn 385 biluk 387 biadan 816 pm5.17 1009 bigolden 1024 xorcom 1509 xorcomOLD 1510 norass 1535 trubifal 1570 hadcoma 1600 abeq1 2873 ssequn1 4114 ab0w 4307 disj 4381 axpow3 5291 isocnv 7201 qextlt 12937 qextle 12938 rpnnen2lem12 15934 odd2np1 16050 sumodd 16097 nrmmetd 23730 lgsqrmodndvds 26501 mgccnv 31277 cvmlift2lem12 33276 xpord3ind 33800 nn0prpw 34512 wl-3xorrot 35648 wl-3xorcoma 35649 tsbi4 36294 bicomdd 36868 ifpbicor 41082 rp-fakeoranass 41121 or3or 41631 3impexpbicom 42099 3impexpbicomVD 42477 limsupreuz 43278 nabctnabc 44426 isomuspgrlem2b 45281 |
Copyright terms: Public domain | W3C validator |