![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version |
Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 221 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 221 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bicomd 223 bibi1i 338 bibi1d 343 con2bi 353 ibibr 368 bibif 371 nbbn 383 biluk 385 biadan 819 pm5.17 1013 bigolden 1028 xorcom 1511 norass 1534 trubifal 1568 hadcoma 1596 eqabcb 2881 pm13.183 3666 ssequn1 4196 ab0w 4385 disj 4456 axpow3 5374 isocnv 7350 qextlt 13242 qextle 13243 rpnnen2lem12 16258 odd2np1 16375 sumodd 16422 nrmmetd 24603 lgsqrmodndvds 27412 eqelbid 32503 mgccnv 32974 cvmlift2lem12 35299 nn0prpw 36306 wl-3xorrot 37460 wl-3xorcoma 37461 tsbi4 38123 bicomdd 38836 onsupmaxb 43228 ifpbicor 43465 rp-fakeoranass 43504 or3or 44013 3impexpbicom 44477 3impexpbicomVD 44855 notbicom 45108 limsupreuz 45693 nabctnabc 46881 |
Copyright terms: Public domain | W3C validator |