| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version | ||
| Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 221 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 2 | bicom1 221 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bicomd 223 bibi1i 338 bibi1d 343 con2bi 353 ibibr 368 bibif 371 nbbn 383 biluk 385 biadan 818 pm5.17 1013 bigolden 1028 xorcom 1514 norass 1537 trubifal 1571 hadcoma 1599 eqabcb 2869 pm13.183 3632 ssequn1 4149 ab0w 4342 disj 4413 isocnv 7305 qextlt 13163 qextle 13164 rpnnen2lem12 16193 odd2np1 16311 sumodd 16358 nrmmetd 24462 lgsqrmodndvds 27264 eqelbid 32404 mgccnv 32925 cvmlift2lem12 35301 nn0prpw 36311 wl-3xorrot 37465 wl-3xorcoma 37466 tsbi4 38130 bicomdd 38847 onsupmaxb 43228 ifpbicor 43464 rp-fakeoranass 43503 or3or 44012 3impexpbicom 44470 3impexpbicomVD 44846 notbicom 45159 limsupreuz 45735 nabctnabc 46932 |
| Copyright terms: Public domain | W3C validator |