![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version |
Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 221 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 221 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bicomd 223 bibi1i 338 bibi1d 343 con2bi 353 ibibr 368 bibif 371 nbbn 383 biluk 385 biadan 818 pm5.17 1012 bigolden 1027 xorcom 1511 norass 1534 trubifal 1568 hadcoma 1596 eqabcb 2886 pm13.183 3679 ssequn1 4209 ab0w 4401 disj 4473 axpow3 5386 isocnv 7366 qextlt 13265 qextle 13266 rpnnen2lem12 16273 odd2np1 16389 sumodd 16436 nrmmetd 24608 lgsqrmodndvds 27415 eqelbid 32503 mgccnv 32972 cvmlift2lem12 35282 nn0prpw 36289 wl-3xorrot 37443 wl-3xorcoma 37444 tsbi4 38096 bicomdd 38810 onsupmaxb 43200 ifpbicor 43437 rp-fakeoranass 43476 or3or 43985 3impexpbicom 44450 3impexpbicomVD 44828 notbicom 45071 limsupreuz 45658 nabctnabc 46846 |
Copyright terms: Public domain | W3C validator |