![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bicom | Structured version Visualization version GIF version |
Description: Commutative law for the biconditional. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 220 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 220 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bicomd 222 bibi1i 338 bibi1d 343 con2bi 353 ibibr 368 bibif 371 nbbn 384 biluk 386 biadan 817 pm5.17 1010 bigolden 1025 xorcom 1512 xorcomOLD 1513 norass 1538 trubifal 1572 hadcoma 1600 eqabcb 2875 ssequn1 4179 ab0w 4372 disj 4446 axpow3 5365 isocnv 7323 qextlt 13178 qextle 13179 rpnnen2lem12 16164 odd2np1 16280 sumodd 16327 nrmmetd 24074 lgsqrmodndvds 26845 eqelbid 31702 mgccnv 32156 cvmlift2lem12 34293 nn0prpw 35196 wl-3xorrot 36346 wl-3xorcoma 36347 tsbi4 36992 bicomdd 37712 onsupmaxb 41973 ifpbicor 42211 rp-fakeoranass 42250 or3or 42759 3impexpbicom 43225 3impexpbicomVD 43603 notbicom 43845 limsupreuz 44439 nabctnabc 45627 isomuspgrlem2b 46483 |
Copyright terms: Public domain | W3C validator |