|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > truxorfal | Structured version Visualization version GIF version | ||
| Description: A ⊻ identity. (Contributed by David A. Wheeler, 8-May-2015.) | 
| Ref | Expression | 
|---|---|
| truxorfal | ⊢ ((⊤ ⊻ ⊥) ↔ ⊤) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xor 1511 | . . 3 ⊢ ((⊤ ⊻ ⊥) ↔ ¬ (⊤ ↔ ⊥)) | |
| 2 | trubifal 1570 | . . 3 ⊢ ((⊤ ↔ ⊥) ↔ ⊥) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ ((⊤ ⊻ ⊥) ↔ ¬ ⊥) | 
| 4 | notfal 1567 | . 2 ⊢ (¬ ⊥ ↔ ⊤) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ ((⊤ ⊻ ⊥) ↔ ⊤) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1510 ⊤wtru 1540 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-xor 1511 df-tru 1542 df-fal 1552 | 
| This theorem is referenced by: falxortru 1586 | 
| Copyright terms: Public domain | W3C validator |