MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truimtru Structured version   Visualization version   GIF version

Theorem truimtru 1561
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) An alternate proof is possible using trud 1548 instead of id 22 but the principle of identity id 22 is more basic, and the present proof indicates that the result still holds in relevance logic. (Proof modification is discouraged.)
Assertion
Ref Expression
truimtru ((⊤ → ⊤) ↔ ⊤)

Proof of Theorem truimtru
StepHypRef Expression
1 id 22 . 2 (⊤ → ⊤)
21bitru 1547 1 ((⊤ → ⊤) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wtru 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-tru 1541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator