MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Structured version   Visualization version   GIF version

Theorem bitru 1549
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1 𝜑
Assertion
Ref Expression
bitru (𝜑 ↔ ⊤)

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2 𝜑
2 tru 1544 . 2
31, 22th 264 1 (𝜑 ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wtru 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-tru 1543
This theorem is referenced by:  truimtru  1563  falimtru  1565  falimfal  1566  notfal  1568  trubitru  1569  falbifal  1572  truorfal  1578  falortru  1579  exists1  2661  dfv2  3483  0frgp  19797  tgcgr4  28539  wl-2mintru1  37491  astbstanbst  46921  atnaiana  46935  dandysum2p2e4  47010
  Copyright terms: Public domain W3C validator