MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Structured version   Visualization version   GIF version

Theorem bitru 1548
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1 𝜑
Assertion
Ref Expression
bitru (𝜑 ↔ ⊤)

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2 𝜑
2 tru 1543 . 2
31, 22th 263 1 (𝜑 ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wtru 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542
This theorem is referenced by:  truimtru  1562  falimtru  1564  falimfal  1565  notfal  1567  trubitru  1568  falbifal  1571  truorfal  1577  falortru  1578  exists1  2662  dfv2  3435  0frgp  19385  tgcgr4  26892  wl-2mintru1  35661  astbstanbst  44404  atnaiana  44418  dandysum2p2e4  44493
  Copyright terms: Public domain W3C validator