MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Structured version   Visualization version   GIF version

Theorem bitru 1539
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1 𝜑
Assertion
Ref Expression
bitru (𝜑 ↔ ⊤)

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2 𝜑
2 tru 1534 . 2
31, 22th 265 1 (𝜑 ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wtru 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-tru 1533
This theorem is referenced by:  truimtru  1553  falimtru  1555  falimfal  1556  notfal  1558  trubitru  1559  falbifal  1562  truorfal  1568  falortru  1569  exists1  2746  0frgp  18827  tgcgr4  26231  astbstanbst  43008  atnaiana  43022  dandysum2p2e4  43097
  Copyright terms: Public domain W3C validator