Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitru | Structured version Visualization version GIF version |
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
bitru.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
bitru | ⊢ (𝜑 ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitru.1 | . 2 ⊢ 𝜑 | |
2 | tru 1543 | . 2 ⊢ ⊤ | |
3 | 1, 2 | 2th 263 | 1 ⊢ (𝜑 ↔ ⊤) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 |
This theorem is referenced by: truimtru 1562 falimtru 1564 falimfal 1565 notfal 1567 trubitru 1568 falbifal 1571 truorfal 1577 falortru 1578 exists1 2662 dfv2 3435 0frgp 19385 tgcgr4 26892 wl-2mintru1 35661 astbstanbst 44404 atnaiana 44418 dandysum2p2e4 44493 |
Copyright terms: Public domain | W3C validator |