| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitru | Structured version Visualization version GIF version | ||
| Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| bitru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| bitru | ⊢ (𝜑 ↔ ⊤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitru.1 | . 2 ⊢ 𝜑 | |
| 2 | tru 1544 | . 2 ⊢ ⊤ | |
| 3 | 1, 2 | 2th 264 | 1 ⊢ (𝜑 ↔ ⊤) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 |
| This theorem is referenced by: truimtru 1563 falimtru 1565 falimfal 1566 notfal 1568 trubitru 1569 falbifal 1572 truorfal 1578 falortru 1579 exists1 2661 dfv2 3483 0frgp 19797 tgcgr4 28539 wl-2mintru1 37491 astbstanbst 46921 atnaiana 46935 dandysum2p2e4 47010 |
| Copyright terms: Public domain | W3C validator |