MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Structured version   Visualization version   GIF version

Theorem bitru 1551
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1 𝜑
Assertion
Ref Expression
bitru (𝜑 ↔ ⊤)

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2 𝜑
2 tru 1546 . 2
31, 22th 264 1 (𝜑 ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wtru 1543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1545
This theorem is referenced by:  truimtru  1565  falimtru  1567  falimfal  1568  notfal  1570  trubitru  1571  falbifal  1574  truorfal  1580  falortru  1581  exists1  2657  dfv2  3478  0frgp  19647  tgcgr4  27782  wl-2mintru1  36371  astbstanbst  45619  atnaiana  45633  dandysum2p2e4  45708
  Copyright terms: Public domain W3C validator