MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Structured version   Visualization version   GIF version

Theorem bitru 1662
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1 𝜑
Assertion
Ref Expression
bitru (𝜑 ↔ ⊤)

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2 𝜑
2 tru 1657 . 2
31, 22th 255 1 (𝜑 ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 197  wtru 1653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 198  df-tru 1656
This theorem is referenced by:  truimtru  1676  falimtru  1678  falimfal  1679  notfal  1681  trubitru  1682  falbifal  1685  truorfal  1691  falortru  1692  exists1  2683  0frgp  18457  tgcgr4  25716  astbstanbst  41648  atnaiana  41662  dandysum2p2e4  41737
  Copyright terms: Public domain W3C validator