|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bitru | Structured version Visualization version GIF version | ||
| Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.) | 
| Ref | Expression | 
|---|---|
| bitru.1 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| bitru | ⊢ (𝜑 ↔ ⊤) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bitru.1 | . 2 ⊢ 𝜑 | |
| 2 | tru 1544 | . 2 ⊢ ⊤ | |
| 3 | 1, 2 | 2th 264 | 1 ⊢ (𝜑 ↔ ⊤) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ⊤wtru 1541 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-tru 1543 | 
| This theorem is referenced by: truimtru 1563 falimtru 1565 falimfal 1566 notfal 1568 trubitru 1569 falbifal 1572 truorfal 1578 falortru 1579 exists1 2661 dfv2 3483 0frgp 19797 tgcgr4 28539 wl-2mintru1 37491 astbstanbst 46921 atnaiana 46935 dandysum2p2e4 47010 | 
| Copyright terms: Public domain | W3C validator |