Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitru | Structured version Visualization version GIF version |
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
bitru.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
bitru | ⊢ (𝜑 ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitru.1 | . 2 ⊢ 𝜑 | |
2 | tru 1542 | . 2 ⊢ ⊤ | |
3 | 1, 2 | 2th 267 | 1 ⊢ (𝜑 ↔ ⊤) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ⊤wtru 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-tru 1541 |
This theorem is referenced by: truimtru 1561 falimtru 1563 falimfal 1564 notfal 1566 trubitru 1567 falbifal 1570 truorfal 1576 falortru 1577 exists1 2682 dfv2 3412 0frgp 18972 tgcgr4 26424 wl-2mintru1 35187 astbstanbst 43868 atnaiana 43882 dandysum2p2e4 43957 |
Copyright terms: Public domain | W3C validator |