MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trud Structured version   Visualization version   GIF version

Theorem trud 1547
Description: Anything implies . Dual statement of falim 1554. Deduction form of tru 1541. Note on naming: in 2022, the theorem now known as mptru 1544 was renamed from trud so if you are reading documentation written before that time, references to trud refer to what is now mptru 1544. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
Assertion
Ref Expression
trud (𝜑 → ⊤)

Proof of Theorem trud
StepHypRef Expression
1 tru 1541 . 2
21a1i 11 1 (𝜑 → ⊤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wtru 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-tru 1540
This theorem is referenced by:  falimtru  1562  emptyex  1905  disjprg  5144  euotd  5523  elabrex  7262  elabrexg  7263  riota5f  7416  bj-abv  36889  wl-2mintru1  37473  wl-nax6im  37499  ac6s6  38159  lhpexle1  39991  prjspvs  42597  cnvtrucl0  43614  rfovcnvf1od  43994  fsupdm  46798  thinciso  48861
  Copyright terms: Public domain W3C validator