| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trud | Structured version Visualization version GIF version | ||
| Description: Anything implies ⊤. Dual statement of falim 1557. Deduction form of tru 1544. Note on naming: in 2022, the theorem now known as mptru 1547 was renamed from trud so if you are reading documentation written before that time, references to trud refer to what is now mptru 1547. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| trud | ⊢ (𝜑 → ⊤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ⊤) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤wtru 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 |
| This theorem is referenced by: falimtru 1565 emptyex 1907 disjprg 5091 euotd 5460 elabrex 7182 elabrexg 7183 riota5f 7338 bj-abv 36879 wl-2mintru1 37463 wl-nax6im 37491 ac6s6 38151 lhpexle1 39987 prjspvs 42583 cnvtrucl0 43597 rfovcnvf1od 43977 fsupdm 46824 thinciso 49456 |
| Copyright terms: Public domain | W3C validator |