MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trud Structured version   Visualization version   GIF version

Theorem trud 1648
Description: Anything implies . Dual statement of falim 1655. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
Assertion
Ref Expression
trud (𝜑 → ⊤)

Proof of Theorem trud
StepHypRef Expression
1 tru 1642 . 2
21a1i 11 1 (𝜑 → ⊤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wtru 1638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 198  df-tru 1641
This theorem is referenced by:  falimtru  1663  disjprg  4840  euotd  5168  mptexgf  6706  elabrex  6721  riota5f  6856  ac6s6  34285  lhpexle1  35783  cnvtrucl0  38425  rfovcnvf1od  38792  elabrexg  39694
  Copyright terms: Public domain W3C validator