MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trud Structured version   Visualization version   GIF version

Theorem trud 1552
Description: Anything implies . Dual statement of falim 1559. Deduction form of tru 1546. Note on naming: in 2022, the theorem now known as mptru 1549 was renamed from trud so if you are reading documentation written before that time, references to trud refer to what is now mptru 1549. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
Assertion
Ref Expression
trud (𝜑 → ⊤)

Proof of Theorem trud
StepHypRef Expression
1 tru 1546 . 2
21a1i 11 1 (𝜑 → ⊤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wtru 1543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1545
This theorem is referenced by:  falimtru  1567  emptyex  1911  disjprgw  5144  disjprg  5145  euotd  5514  elabrex  7242  riota5f  7394  bj-abv  35786  wl-2mintru1  36371  wl-nax6im  36387  ac6s6  37040  lhpexle1  38879  prjspvs  41352  cnvtrucl0  42375  rfovcnvf1od  42755  elabrexg  43728  fsupdm  45558  thinciso  47680
  Copyright terms: Public domain W3C validator