Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-impchain-a1-2 Structured version   Visualization version   GIF version

Theorem wl-impchain-a1-2 35633
Description: Inference rule, a copy of a1d 25. First recursive proof based on the previous instance. (Contributed by Wolf Lammen, 20-Jun-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wl-impchain-a1-2.a (𝜑𝜓)
Assertion
Ref Expression
wl-impchain-a1-2 (𝜑 → (𝜒𝜓))

Proof of Theorem wl-impchain-a1-2
StepHypRef Expression
1 wl-impchain-a1-2.a . . 3 (𝜑𝜓)
21wl-impchain-a1-1 35632 . 2 (𝜒 → (𝜑𝜓))
32wl-impchain-com-1.2 35624 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35590  ax-luk2 35591  ax-luk3 35592
This theorem is referenced by:  wl-impchain-a1-3  35634
  Copyright terms: Public domain W3C validator