Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-impchain-a1-3 Structured version   Visualization version   GIF version

Theorem wl-impchain-a1-3 35160
Description: Inference rule, a copy of a1dd 50. A recursive proof depending on previous instances, and demonstrating the proof pattern. (Contributed by Wolf Lammen, 20-Jun-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wl-impchain-a1-3.a (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
wl-impchain-a1-3 (𝜑 → (𝜓 → (𝜃𝜒)))

Proof of Theorem wl-impchain-a1-3
StepHypRef Expression
1 wl-impchain-a1-3.a . . 3 (𝜑 → (𝜓𝜒))
21wl-impchain-a1-2 35159 . 2 (𝜑 → (𝜃 → (𝜓𝜒)))
32wl-impchain-com-2.3 35154 1 (𝜑 → (𝜓 → (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35116  ax-luk2 35117  ax-luk3 35118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator