Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-mpi Structured version   Visualization version   GIF version

Theorem wl-luk-mpi 35601
Description: A nested modus ponens inference. Copy of mpi 20 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
wl-luk-mpi.1 𝜓
wl-luk-mpi.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
wl-luk-mpi (𝜑𝜒)

Proof of Theorem wl-luk-mpi
StepHypRef Expression
1 wl-luk-mpi.1 . . . 4 𝜓
21wl-luk-a1i 35600 . . 3 𝜒𝜓)
3 wl-luk-mpi.2 . . 3 (𝜑 → (𝜓𝜒))
42, 3wl-luk-imtrid 35596 . 2 (𝜑 → (¬ 𝜒𝜒))
54wl-luk-pm2.18d 35597 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35590  ax-luk2 35591  ax-luk3 35592
This theorem is referenced by:  wl-luk-imim2i  35602
  Copyright terms: Public domain W3C validator