Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-luk-mpi | Structured version Visualization version GIF version |
Description: A nested modus ponens inference. Copy of mpi 20 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wl-luk-mpi.1 | ⊢ 𝜓 |
wl-luk-mpi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
wl-luk-mpi | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-luk-mpi.1 | . . . 4 ⊢ 𝜓 | |
2 | 1 | wl-luk-a1i 35506 | . . 3 ⊢ (¬ 𝜒 → 𝜓) |
3 | wl-luk-mpi.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | wl-luk-imtrid 35502 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜒)) |
5 | 4 | wl-luk-pm2.18d 35503 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-luk1 35496 ax-luk2 35497 ax-luk3 35498 |
This theorem is referenced by: wl-luk-imim2i 35508 |
Copyright terms: Public domain | W3C validator |