HomeHome Metamath Proof Explorer
Theorem List (p. 370 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 36901-37000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremriotasv3d 36901* A property 𝜒 holding for a representative of a single-valued class expression 𝐶(𝑦) (see e.g. reusv2 5321) also holds for its description binder 𝐷 (in the form of property 𝜃). (Contributed by NM, 5-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜃)    &   (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))    &   ((𝜑𝐶 = 𝐷) → (𝜒𝜃))    &   (𝜑 → ((𝑦𝐵𝜓) → 𝜒))    &   (𝜑𝐷𝐴)    &   (𝜑 → ∃𝑦𝐵 𝜓)       ((𝜑𝐴𝑉) → 𝜃)
 
20.24.4  Experiments with weak deduction theorem
 
Theoremelimhyps 36902 A version of elimhyp 4521 using explicit substitution. (Contributed by NM, 15-Jun-2019.)
[𝐵 / 𝑥]𝜑       [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑
 
Theoremdedths 36903 A version of weak deduction theorem dedth 4514 using explicit substitution. (Contributed by NM, 15-Jun-2019.)
[if(𝜑, 𝑥, 𝐵) / 𝑥]𝜓       (𝜑𝜓)
 
TheoremrenegclALT 36904 Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 11214. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
 
Theoremelimhyps2 36905 Generalization of elimhyps 36902 that is not useful unless we can separately prove 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.)
[𝐵 / 𝑥]𝜑       [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑
 
Theoremdedths2 36906 Generalization of dedths 36903 that is not useful unless we can separately prove 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.)
[if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)
 
Theoremnfcxfrdf 36907 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by NM, 19-Nov-2020.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴)
 
Theoremnfded 36908 A deduction theorem that converts a not-free inference directly to deduction form. The first hypothesis is the hypothesis of the deduction form. The second is an equality deduction (e.g., (𝑥𝐴 {𝑦 ∣ ∀𝑥𝑦𝐴} = 𝐴)) that starts from abidnf 3633. The last is assigned to the inference form (e.g., 𝑥 {𝑦 ∣ ∀𝑥𝑦𝐴}) whose hypothesis is satisfied using nfaba1 2914. (Contributed by NM, 19-Nov-2020.)
(𝜑𝑥𝐴)    &   (𝑥𝐴𝐵 = 𝐶)    &   𝑥𝐵       (𝜑𝑥𝐶)
 
Theoremnfded2 36909 A deduction theorem that converts a not-free inference directly to deduction form. The first 2 hypotheses are the hypotheses of the deduction form. The third is an equality deduction (e.g., ((𝑥𝐴𝑥𝐵) → ⟨{𝑦 ∣ ∀𝑥𝑦𝐴}, {𝑦 ∣ ∀𝑥𝑦𝐵}⟩ = ⟨𝐴, 𝐵⟩) for nfopd 4818) that starts from abidnf 3633. The last is assigned to the inference form (e.g., 𝑥⟨{𝑦 ∣ ∀𝑥𝑦𝐴}, {𝑦 ∣ ∀𝑥𝑦𝐵}⟩ for nfop 4817) whose hypotheses are satisfied using nfaba1 2914. (Contributed by NM, 19-Nov-2020.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)    &   ((𝑥𝐴𝑥𝐵) → 𝐶 = 𝐷)    &   𝑥𝐶       (𝜑𝑥𝐷)
 
TheoremnfunidALT2 36910 Deduction version of nfuni 4843. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝑥𝐴)       (𝜑𝑥 𝐴)
 
TheoremnfunidALT 36911 Deduction version of nfuni 4843. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝑥𝐴)       (𝜑𝑥 𝐴)
 
TheoremnfopdALT 36912 Deduction version of bound-variable hypothesis builder nfop 4817. This shows how the deduction version of a not-free theorem such as nfop 4817 can be created from the corresponding not-free inference theorem. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴, 𝐵⟩)
 
20.24.5  Miscellanea
 
Theoremcnaddcom 36913 Recover the commutative law of addition for complex numbers from the Abelian group structure. (Contributed by NM, 17-Mar-2013.) (Proof modification is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremtoycom 36914* Show the commutative law for an operation 𝑂 on a toy structure class 𝐶 of commuatitive operations on . This illustrates how a structure class can be partially specialized. In practice, we would ordinarily define a new constant such as "CAbel" in place of 𝐶. (Contributed by NM, 17-Mar-2013.) (Proof modification is discouraged.)
𝐶 = {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ}    &    + = (+g𝐾)       ((𝐾𝐶𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
20.24.6  Atoms, hyperplanes, and covering in a left vector space (or module)
 
Syntaxclsa 36915 Extend class notation with all 1-dim subspaces (atoms) of a left module or left vector space.
class LSAtoms
 
Syntaxclsh 36916 Extend class notation with all subspaces of a left module or left vector space that are hyperplanes.
class LSHyp
 
Definitiondf-lsatoms 36917* Define the set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014.)
LSAtoms = (𝑤 ∈ V ↦ ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})))
 
Definitiondf-lshyp 36918* Define the set of all hyperplanes of a left module or left vector space. Also called co-atoms, these are subspaces that are one dimension less than the full space. (Contributed by NM, 29-Jun-2014.)
LSHyp = (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))})
 
Theoremlshpset 36919* The set of all hyperplanes of a left module or left vector space. The vector 𝑣 is called a generating vector for the hyperplane. (Contributed by NM, 29-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐻 = (LSHyp‘𝑊)       (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
 
Theoremislshp 36920* The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐻 = (LSHyp‘𝑊)       (𝑊𝑋 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
 
Theoremislshpsm 36921* Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LMod)       (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
 
Theoremlshplss 36922 A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐻)       (𝜑𝑈𝑆)
 
Theoremlshpne 36923 A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.)
𝑉 = (Base‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐻)       (𝜑𝑈𝑉)
 
Theoremlshpnel 36924 A hyperplane's generating vector does not belong to the hyperplane. (Contributed by NM, 3-Jul-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐻)    &   (𝜑𝑋𝑉)    &   (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)       (𝜑 → ¬ 𝑋𝑈)
 
Theoremlshpnelb 36925 The subspace sum of a hyperplane and the span of an element equals the vector space iff the element is not in the hyperplane. (Contributed by NM, 2-Oct-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝐻)    &   (𝜑𝑋𝑉)       (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
 
Theoremlshpnel2N 36926 Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝑉)    &   (𝜑 → ¬ 𝑋𝑈)       (𝜑 → (𝑈𝐻 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
 
Theoremlshpne0 36927 The member of the span in the hyperplane definition does not belong to the hyperplane. (Contributed by NM, 14-Jul-2014.) (Proof shortened by AV, 19-Jul-2022.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &    0 = (0g𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐻)    &   (𝜑𝑋𝑉)    &   (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)       (𝜑𝑋0 )
 
Theoremlshpdisj 36928 A hyperplane and the span in the hyperplane definition are disjoint. (Contributed by NM, 3-Jul-2014.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝐻)    &   (𝜑𝑋𝑉)    &   (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)       (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 })
 
Theoremlshpcmp 36929 If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014.)
𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑇𝐻)    &   (𝜑𝑈𝐻)       (𝜑 → (𝑇𝑈𝑇 = 𝑈))
 
TheoremlshpinN 36930 The intersection of two different hyperplanes is not a hyperplane. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.)
𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑇𝐻)    &   (𝜑𝑈𝐻)       (𝜑 → ((𝑇𝑈) ∈ 𝐻𝑇 = 𝑈))
 
Theoremlsatset 36931* The set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)       (𝑊𝑋𝐴 = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
 
Theoremislsat 36932* The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)       (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
 
Theoremlsatlspsn2 36933 The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn 36934 instead? (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)
 
Theoremlsatlspsn 36934 The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)
 
Theoremislsati 36935* A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)       ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
 
Theoremlsateln0 36936* A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐴)       (𝜑 → ∃𝑣𝑈 𝑣0 )
 
Theoremlsatlss 36937 The set of 1-dim subspaces is a set of subspaces. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)       (𝑊 ∈ LMod → 𝐴𝑆)
 
Theoremlsatlssel 36938 An atom is a subspace. (Contributed by NM, 25-Aug-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐴)       (𝜑𝑈𝑆)
 
Theoremlsatssv 36939 An atom is a set of vectors. (Contributed by NM, 27-Feb-2015.)
𝑉 = (Base‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑄𝐴)       (𝜑𝑄𝑉)
 
Theoremlsatn0 36940 A 1-dim subspace (atom) of a left module or left vector space is nonzero. (atne0 30608 analog.) (Contributed by NM, 25-Aug-2014.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐴)       (𝜑𝑈 ≠ { 0 })
 
Theoremlsatspn0 36941 The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋𝑉)       (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴𝑋0 ))
 
Theoremlsator0sp 36942 The span of a vector is either an atom or the zero subspace. (Contributed by NM, 15-Mar-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋𝑉)       (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ∨ (𝑁‘{𝑋}) = { 0 }))
 
Theoremlsatssn0 36943 A subspace (or any class) including an atom is nonzero. (Contributed by NM, 3-Feb-2015.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑄𝐴)    &   (𝜑𝑄𝑈)       (𝜑𝑈 ≠ { 0 })
 
Theoremlsatcmp 36944 If two atoms are comparable, they are equal. (atsseq 30610 analog.) TODO: can lspsncmp 20293 shorten this? (Contributed by NM, 25-Aug-2014.)
𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑇𝐴)    &   (𝜑𝑈𝐴)       (𝜑 → (𝑇𝑈𝑇 = 𝑈))
 
Theoremlsatcmp2 36945 If an atom is included in at-most an atom, they are equal. More general version of lsatcmp 36944. TODO: can lspsncmp 20293 shorten this? (Contributed by NM, 3-Feb-2015.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑇𝐴)    &   (𝜑 → (𝑈𝐴𝑈 = { 0 }))       (𝜑 → (𝑇𝑈𝑇 = 𝑈))
 
Theoremlsatel 36946 A nonzero vector in an atom determines the atom. (Contributed by NM, 25-Aug-2014.)
0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝐴)    &   (𝜑𝑋𝑈)    &   (𝜑𝑋0 )       (𝜑𝑈 = (𝑁‘{𝑋}))
 
TheoremlsatelbN 36947 A nonzero vector in an atom determines the atom. (Contributed by NM, 3-Feb-2015.) (New usage is discouraged.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑈𝐴)       (𝜑 → (𝑋𝑈𝑈 = (𝑁‘{𝑋})))
 
Theoremlsat2el 36948 Two atoms sharing a nonzero vector are equal. (Contributed by NM, 8-Mar-2015.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑃𝐴)    &   (𝜑𝑄𝐴)    &   (𝜑𝑋0 )    &   (𝜑𝑋𝑃)    &   (𝜑𝑋𝑄)       (𝜑𝑃 = 𝑄)
 
Theoremlsmsat 36949* Convert comparison of atom with sum of subspaces to a comparison to sum with atom. (elpaddatiN 37746 analog.) TODO: any way to shorten this? (Contributed by NM, 15-Jan-2015.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)    &   (𝜑𝑇 ≠ { 0 })    &   (𝜑𝑄 ⊆ (𝑇 𝑈))       (𝜑 → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)))
 
TheoremlsatfixedN 36950* Show equality with the span of the sum of two vectors, one of which (𝑋) is fixed in advance. Compare lspfixed 20305. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑄𝐴)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑄 ≠ (𝑁‘{𝑋}))    &   (𝜑𝑄 ≠ (𝑁‘{𝑌}))    &   (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))       (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
 
Theoremlsmsatcv 36951 Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 29915 analog.) Explicit atom version of lsmcv 20318. (Contributed by NM, 29-Oct-2014.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))
 
Theoremlssatomic 36952* The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 30621 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝑆)    &   (𝜑𝑈 ≠ { 0 })       (𝜑 → ∃𝑞𝐴 𝑞𝑈)
 
Theoremlssats 36953* The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 30624 analog.) (Contributed by NM, 9-Apr-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
 
Theoremlpssat 36954* Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (chpssati 30626 analog.) (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑇𝑈)       (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
 
Theoremlrelat 36955* Subspaces are relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 30627 analog.) (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑇𝑈)       (𝜑 → ∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈))
 
Theoremlssatle 36956* The ordering of two subspaces is determined by the atoms under them. (chrelat3 30634 analog.) (Contributed by NM, 29-Oct-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
 
Theoremlssat 36957* Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 30626 analog.) (Contributed by NM, 9-Apr-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)       (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
 
Theoremislshpat 36958* Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm 36921. (Contributed by NM, 11-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)       (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
 
Syntaxclcv 36959 Extend class notation with the covering relation for a left module or left vector space.
class L
 
Definitiondf-lcv 36960* Define the covering relation for subspaces of a left vector space. Similar to Definition 3.2.18 of [PtakPulmannova] p. 68. Ptak/Pulmannova's notation 𝐴( ⋖L𝑊)𝐵 is read "𝐵 covers 𝐴 " or "𝐴 is covered by 𝐵 " , and it means that 𝐵 is larger than 𝐴 and there is nothing in between. See lcvbr 36962 for binary relation. (df-cv 30542 analog.) (Contributed by NM, 7-Jan-2015.)
L = (𝑤 ∈ V ↦ {⟨𝑡, 𝑢⟩ ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢)))})
 
Theoremlcvfbr 36961* The covers relation for a left vector space (or a left module). (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)       (𝜑𝐶 = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
 
Theoremlcvbr 36962* The covers relation for a left vector space (or a left module). (cvbr 30545 analog.) (Contributed by NM, 9-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
 
Theoremlcvbr2 36963* The covers relation for a left vector space (or a left module). (cvbr2 30546 analog.) (Contributed by NM, 9-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈))))
 
Theoremlcvbr3 36964* The covers relation for a left vector space (or a left module). (Contributed by NM, 9-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)))))
 
Theoremlcvpss 36965 The covers relation implies proper subset. (cvpss 30548 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑇𝐶𝑈)       (𝜑𝑇𝑈)
 
Theoremlcvnbtwn 36966 The covers relation implies no in-betweenness. (cvnbtwn 30549 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑅𝑆)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝐶𝑇)       (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
 
Theoremlcvntr 36967 The covers relation is not transitive. (cvntr 30555 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑅𝑆)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝐶𝑇)    &   (𝜑𝑇𝐶𝑈)       (𝜑 → ¬ 𝑅𝐶𝑈)
 
Theoremlcvnbtwn2 36968 The covers relation implies no in-betweenness. (cvnbtwn2 30550 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑅𝑆)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝐶𝑇)    &   (𝜑𝑅𝑈)    &   (𝜑𝑈𝑇)       (𝜑𝑈 = 𝑇)
 
Theoremlcvnbtwn3 36969 The covers relation implies no in-betweenness. (cvnbtwn3 30551 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑅𝑆)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝐶𝑇)    &   (𝜑𝑅𝑈)    &   (𝜑𝑈𝑇)       (𝜑𝑈 = 𝑅)
 
Theoremlsmcv2 36970 Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 30556 analog.) (Contributed by NM, 10-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)       (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))
 
Theoremlcvat 36971* If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 30629 analog.) (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑇𝐶𝑈)       (𝜑 → ∃𝑞𝐴 (𝑇 𝑞) = 𝑈)
 
Theoremlsatcv0 36972 An atom covers the zero subspace. (atcv0 30605 analog.) (Contributed by NM, 7-Jan-2015.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑄𝐴)       (𝜑 → { 0 }𝐶𝑄)
 
Theoremlsatcveq0 36973 A subspace covered by an atom must be the zero subspace. (atcveq0 30611 analog.) (Contributed by NM, 7-Jan-2015.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
 
Theoremlsat0cv 36974 A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))
 
Theoremlcvexchlem1 36975 Lemma for lcvexch 36980. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
 
Theoremlcvexchlem2 36976 Lemma for lcvexch 36980. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝑆)    &   (𝜑 → (𝑇𝑈) ⊆ 𝑅)    &   (𝜑𝑅𝑈)       (𝜑 → ((𝑅 𝑇) ∩ 𝑈) = 𝑅)
 
Theoremlcvexchlem3 36977 Lemma for lcvexch 36980. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝑆)    &   (𝜑𝑇𝑅)    &   (𝜑𝑅 ⊆ (𝑇 𝑈))       (𝜑 → ((𝑅𝑈) 𝑇) = 𝑅)
 
Theoremlcvexchlem4 36978 Lemma for lcvexch 36980. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑇𝐶(𝑇 𝑈))       (𝜑 → (𝑇𝑈)𝐶𝑈)
 
Theoremlcvexchlem5 36979 Lemma for lcvexch 36980. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑 → (𝑇𝑈)𝐶𝑈)       (𝜑𝑇𝐶(𝑇 𝑈))
 
Theoremlcvexch 36980 Subspaces satisfy the exchange axiom. Lemma 7.5 of [MaedaMaeda] p. 31. (cvexchi 30632 analog.) TODO: combine some lemmas. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → ((𝑇𝑈)𝐶𝑈𝑇𝐶(𝑇 𝑈)))
 
Theoremlcvp 36981 Covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 30638 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       (𝜑 → ((𝑈𝑄) = { 0 } ↔ 𝑈𝐶(𝑈 𝑄)))
 
Theoremlcv1 36982 Covering property of a subspace plus an atom. (chcv1 30618 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       (𝜑 → (¬ 𝑄𝑈𝑈𝐶(𝑈 𝑄)))
 
Theoremlcv2 36983 Covering property of a subspace plus an atom. (chcv2 30619 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       (𝜑 → (𝑈 ⊊ (𝑈 𝑄) ↔ 𝑈𝐶(𝑈 𝑄)))
 
Theoremlsatexch 36984 The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 30644 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)    &   (𝜑𝑄 ⊆ (𝑈 𝑅))    &   (𝜑 → (𝑈𝑄) = { 0 })       (𝜑𝑅 ⊆ (𝑈 𝑄))
 
Theoremlsatnle 36985 The meet of a subspace and an incomparable atom is the zero subspace. (atnssm0 30639 analog.) (Contributed by NM, 10-Jan-2015.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       (𝜑 → (¬ 𝑄𝑈 ↔ (𝑈𝑄) = { 0 }))
 
Theoremlsatnem0 36986 The meet of distinct atoms is the zero subspace. (atnemeq0 30640 analog.) (Contributed by NM, 10-Jan-2015.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)       (𝜑 → (𝑄𝑅 ↔ (𝑄𝑅) = { 0 }))
 
Theoremlsatexch1 36987 The atom exch1ange property. (hlatexch1 37336 analog.) (Contributed by NM, 14-Jan-2015.)
= (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)    &   (𝜑𝑆𝐴)    &   (𝜑𝑄 ⊆ (𝑆 𝑅))    &   (𝜑𝑄𝑆)       (𝜑𝑅 ⊆ (𝑆 𝑄))
 
Theoremlsatcv0eq 36988 If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 30642 analog.) (Contributed by NM, 10-Jan-2015.)
0 = (0g𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)       (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))
 
Theoremlsatcv1 36989 Two atoms covering the zero subspace are equal. (atcv1 30643 analog.) (Contributed by NM, 10-Jan-2015.)
0 = (0g𝑊)    &    = (LSSum‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)    &   (𝜑𝑈𝐶(𝑄 𝑅))       (𝜑 → (𝑈 = { 0 } ↔ 𝑄 = 𝑅))
 
Theoremlsatcvatlem 36990 Lemma for lsatcvat 36991. (Contributed by NM, 10-Jan-2015.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)    &   (𝜑𝑈 ≠ { 0 })    &   (𝜑𝑈 ⊊ (𝑄 𝑅))    &   (𝜑 → ¬ 𝑄𝑈)       (𝜑𝑈𝐴)
 
Theoremlsatcvat 36991 A nonzero subspace less than the sum of two atoms is an atom. (atcvati 30649 analog.) (Contributed by NM, 10-Jan-2015.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)    &   (𝜑𝑈 ≠ { 0 })    &   (𝜑𝑈 ⊊ (𝑄 𝑅))       (𝜑𝑈𝐴)
 
Theoremlsatcvat2 36992 A subspace covered by the sum of two distinct atoms is an atom. (atcvat2i 30650 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)    &   (𝜑𝑄𝑅)    &   (𝜑𝑈𝐶(𝑄 𝑅))       (𝜑𝑈𝐴)
 
Theoremlsatcvat3 36993 A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 30659 analog.) (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)    &   (𝜑𝑄𝑅)    &   (𝜑 → ¬ 𝑅𝑈)    &   (𝜑𝑄 ⊆ (𝑈 𝑅))       (𝜑 → (𝑈 ∩ (𝑄 𝑅)) ∈ 𝐴)
 
Theoremislshpcv 36994 Hyperplane properties expressed with covers relation. (Contributed by NM, 11-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)       (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝐶𝑉)))
 
Theoreml1cvpat 36995 A subspace covered by the set of all vectors, when summed with an atom not under it, equals the set of all vectors. (1cvrjat 37416 analog.) (Contributed by NM, 11-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)    &   (𝜑𝑈𝐶𝑉)    &   (𝜑 → ¬ 𝑄𝑈)       (𝜑 → (𝑈 𝑄) = 𝑉)
 
Theoreml1cvat 36996 Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in [Crawley] p. 112. (1cvrat 37417 analog.) (Contributed by NM, 11-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)    &   (𝜑𝑄𝑅)    &   (𝜑𝑈𝐶𝑉)    &   (𝜑 → ¬ 𝑄𝑈)       (𝜑 → ((𝑄 𝑅) ∩ 𝑈) ∈ 𝐴)
 
Theoremlshpat 36997 Create an atom under a hyperplane. Part of proof of Lemma B in [Crawley] p. 112. (lhpat 37984 analog.) TODO: This changes 𝑈𝐶𝑉 in l1cvpat 36995 and l1cvat 36996 to 𝑈𝐻, which in turn change 𝑈𝐻 in islshpcv 36994 to 𝑈𝐶𝑉, with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝐻)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)    &   (𝜑𝑄𝑅)    &   (𝜑 → ¬ 𝑄𝑈)       (𝜑 → ((𝑄 𝑅) ∩ 𝑈) ∈ 𝐴)
 
20.24.7  Functionals and kernels of a left vector space (or module)
 
Syntaxclfn 36998 Extend class notation with all linear functionals of a left module or left vector space.
class LFnl
 
Definitiondf-lfl 36999* Define the set of all linear functionals (maps from vectors to the ring) of a left module or left vector space. (Contributed by NM, 15-Apr-2014.)
LFnl = (𝑤 ∈ V ↦ {𝑓 ∈ ((Base‘(Scalar‘𝑤)) ↑m (Base‘𝑤)) ∣ ∀𝑟 ∈ (Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠𝑤)𝑥)(+g𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓𝑥))(+g‘(Scalar‘𝑤))(𝑓𝑦))})
 
Theoremlflset 37000* The set of linear functionals in a left module or left vector space. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝐷 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐷)    &    = (+g𝐷)    &    × = (.r𝐷)    &   𝐹 = (LFnl‘𝑊)       (𝑊𝑋𝐹 = {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >