| Metamath
Proof Explorer Theorem List (p. 370 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | bj-inrab2 36901 | Shorter proof of inrab 4269. (Contributed by BJ, 21-Apr-2019.) (Proof modification is discouraged.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | ||
| Theorem | bj-inrab3 36902* | Generalization of dfrab3ss 4276, which it may shorten. (Contributed by BJ, 21-Apr-2019.) (Revised by OpenAI, 7-Jul-2020.) |
| ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) | ||
| Theorem | bj-rabtr 36903* | Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 | ||
| Theorem | bj-rabtrALT 36904* | Alternate proof of bj-rabtr 36903. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 | ||
| Theorem | bj-rabtrAUTO 36905* | Proof of bj-rabtr 36903 found automatically by the Metamath program "MM-PA> IMPROVE ALL / DEPTH 3 / 3" command followed by "MM-PA> MINIMIZE_WITH *". (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 | ||
| Syntax | bj-cgab 36906 | Syntax for generalized class abstractions. |
| class {𝐴 ∣ 𝑥 ∣ 𝜑} | ||
| Definition | df-bj-gab 36907* | Definition of generalized class abstractions: typically, 𝑥 is a bound variable in 𝐴 and 𝜑 and {𝐴 ∣ 𝑥 ∣ 𝜑} denotes "the class of 𝐴(𝑥)'s such that 𝜑(𝑥)". (Contributed by BJ, 4-Oct-2024.) |
| ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} | ||
| Theorem | bj-gabss 36908 | Inclusion of generalized class abstractions. (Contributed by BJ, 4-Oct-2024.) |
| ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → {𝐴 ∣ 𝑥 ∣ 𝜑} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜓}) | ||
| Theorem | bj-gabssd 36909 | Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝐴 ∣ 𝑥 ∣ 𝜓} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜒}) | ||
| Theorem | bj-gabeqd 36910 | Equality of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝐴 ∣ 𝑥 ∣ 𝜓} = {𝐵 ∣ 𝑥 ∣ 𝜒}) | ||
| Theorem | bj-gabeqis 36911* | Equality of generalized class abstractions, with implicit substitution. (Contributed by BJ, 4-Oct-2024.) |
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝐵 ∣ 𝑦 ∣ 𝜓} | ||
| Theorem | bj-elgab 36912 | Elements of a generalized class abstraction. (Contributed by BJ, 4-Oct-2024.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (∃𝑥(𝐴 = 𝐵 ∧ 𝜓) ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐴 ∈ {𝐵 ∣ 𝑥 ∣ 𝜓} ↔ 𝜒)) | ||
| Theorem | bj-gabima 36913 |
Generalized class abstraction as a direct image.
TODO: improve the support lemmas elimag 6019 and fvelima 6892 to nonfreeness hypothesis (and for the latter, biconditional). (Contributed by BJ, 4-Oct-2024.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝐹) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ dom 𝐹) ⇒ ⊢ (𝜑 → {(𝐹‘𝑥) ∣ 𝑥 ∣ 𝜓} = (𝐹 “ {𝑥 ∣ 𝜓})) | ||
In this subsection, we define restricted nonfreeness (or relative nonfreeness). | ||
| Syntax | wrnf 36914 | Syntax for restricted nonfreeness. |
| wff Ⅎ𝑥 ∈ 𝐴𝜑 | ||
| Definition | df-bj-rnf 36915 | Definition of restricted nonfreeness. Informally, the proposition Ⅎ𝑥 ∈ 𝐴𝜑 means that 𝜑(𝑥) does not vary on 𝐴. (Contributed by BJ, 19-Mar-2021.) |
| ⊢ (Ⅎ𝑥 ∈ 𝐴𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) | ||
A few results around Russell's paradox. For clarity, we prove separately a FOL statement (now in the main part as ru0 2128) and then two versions (bj-ru1 36916 and bj-ru 36917). Special attention is put on minimizing axiom depencencies. | ||
| Theorem | bj-ru1 36916* | A version of Russell's paradox ru 3742 not mentioning the universal class. (see also bj-ru 36917). (Contributed by BJ, 12-Oct-2019.) Remove usage of ax-10 2142, ax-11 2158, ax-12 2178 by using eqabbw 2802 following BTernaryTau's similar revision of ru 3742. (Revised by BJ, 28-Jun-2025.) (Proof modification is discouraged.) |
| ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} | ||
| Theorem | bj-ru 36917 | Remove dependency on ax-13 2370 (and df-v 3440) from Russell's paradox ru 3742 expressed with primitive symbols and with a class variable 𝑉. Note the more economical use of elissetv 2809 instead of isset 3452 to avoid use of df-v 3440. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ ¬ {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 | ||
| Theorem | currysetlem 36918* | Lemma for currysetlem 36918, where it is used with (𝑥 ∈ 𝑥 → 𝜑) substituted for 𝜓. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜓} ∈ 𝑉 → ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) | ||
| Theorem | curryset 36919* | Curry's paradox in set theory. This can be seen as a generalization of Russell's paradox, which corresponds to the case where 𝜑 is ⊥. See alternate exposal of basically the same proof currysetALT 36923. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
| ⊢ ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 | ||
| Theorem | currysetlem1 36920* | Lemma for currysetALT 36923. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
| ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 ↔ (𝑋 ∈ 𝑋 → 𝜑))) | ||
| Theorem | currysetlem2 36921* | Lemma for currysetALT 36923. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
| ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 → 𝜑)) | ||
| Theorem | currysetlem3 36922* | Lemma for currysetALT 36923. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
| ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ⇒ ⊢ ¬ 𝑋 ∈ 𝑉 | ||
| Theorem | currysetALT 36923* | Alternate proof of curryset 36919, or more precisely alternate exposal of the same proof. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 | ||
A few utility theorems on disjointness of classes. | ||
| Theorem | bj-n0i 36924* | Inference associated with n0 4306. Shortens 2ndcdisj 23359 (2888>2878), notzfaus 5305 (264>253). (Contributed by BJ, 22-Apr-2019.) |
| ⊢ 𝐴 ≠ ∅ ⇒ ⊢ ∃𝑥 𝑥 ∈ 𝐴 | ||
| Theorem | bj-disjsn01 36925 | Disjointness of the singletons containing 0 and 1. This is a consequence of disjcsn 9518 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.) |
| ⊢ ({∅} ∩ {1o}) = ∅ | ||
| Theorem | bj-0nel1 36926 | The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ ∅ ∉ {1o} | ||
| Theorem | bj-1nel0 36927 | 1o does not belong to {∅}. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ 1o ∉ {∅} | ||
A few utility theorems on direct products. | ||
| Theorem | bj-xpimasn 36928 | The image of a singleton, general case. [Change and relabel xpimasn 6138 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.) |
| ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) | ||
| Theorem | bj-xpima1sn 36929 | The image of a singleton by a direct product, empty case. [Change and relabel xpimasn 6138 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) | ||
| Theorem | bj-xpima1snALT 36930 | Alternate proof of bj-xpima1sn 36929. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) | ||
| Theorem | bj-xpima2sn 36931 | The image of a singleton by a direct product, nonempty case. [To replace xpimasn 6138.] (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | ||
| Theorem | bj-xpnzex 36932 | If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv 7860 (up to commutation in the product). (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) | ||
| Theorem | bj-xpexg2 36933 | Curried (exported) form of xpexg 7690. (Contributed by BJ, 2-Apr-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × 𝐵) ∈ V)) | ||
| Theorem | bj-xpnzexb 36934 | If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019.) |
| ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V)) | ||
| Theorem | bj-cleq 36935* | Substitution property for certain classes. (Contributed by BJ, 2-Apr-2019.) |
| ⊢ (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) | ||
This subsection introduces the "singletonization" and the "tagging" of a class. The singletonization of a class is the class of singletons of elements of that class. It is useful since all nonsingletons are disjoint from it, so one can easily adjoin to it disjoint elements, which is what the tagging does: it adjoins the empty set. This can be used for instance to define the one-point compactification of a topological space. It will be used in the next section to define tuples which work for proper classes. | ||
| Theorem | bj-snsetex 36936* | The class of sets "whose singletons" belong to a set is a set. Nice application of ax-rep 5221. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) | ||
| Theorem | bj-clexab 36937* | Sethood of certain classes. (Contributed by BJ, 2-Apr-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐵)} ∈ V) | ||
| Syntax | bj-csngl 36938 | Syntax for singletonization. (Contributed by BJ, 6-Oct-2018.) |
| class sngl 𝐴 | ||
| Definition | df-bj-sngl 36939* | Definition of "singletonization". The class sngl 𝐴 is isomorphic to 𝐴 and since it contains only singletons, it can be easily be adjoined disjoint elements, which can be useful in various constructions. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ sngl 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}} | ||
| Theorem | bj-sngleq 36940 | Substitution property for sngl. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵) | ||
| Theorem | bj-elsngl 36941* | Characterization of the elements of the singletonization of a class. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) | ||
| Theorem | bj-snglc 36942 | Characterization of the elements of 𝐴 in terms of elements of its singletonization. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) | ||
| Theorem | bj-snglss 36943 | The singletonization of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | ||
| Theorem | bj-0nelsngl 36944 | The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8395). (Contributed by BJ, 6-Oct-2018.) |
| ⊢ ∅ ∉ sngl 𝐴 | ||
| Theorem | bj-snglinv 36945* | Inverse of singletonization. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴} | ||
| Theorem | bj-snglex 36946 | A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) | ||
| Syntax | bj-ctag 36947 | Syntax for the tagged copy of a class. (Contributed by BJ, 6-Oct-2018.) |
| class tag 𝐴 | ||
| Definition | df-bj-tag 36948 | Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) 𝐴 of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | ||
| Theorem | bj-tageq 36949 | Substitution property for tag. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵) | ||
| Theorem | bj-eltag 36950* | Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ tag 𝐵 ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) | ||
| Theorem | bj-0eltag 36951 | The empty set belongs to the tagging of a class. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ ∅ ∈ tag 𝐴 | ||
| Theorem | bj-tagn0 36952 | The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ tag 𝐴 ≠ ∅ | ||
| Theorem | bj-tagss 36953 | The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ tag 𝐴 ⊆ 𝒫 𝐴 | ||
| Theorem | bj-snglsstag 36954 | The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ sngl 𝐴 ⊆ tag 𝐴 | ||
| Theorem | bj-sngltagi 36955 | The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ sngl 𝐵 → 𝐴 ∈ tag 𝐵) | ||
| Theorem | bj-sngltag 36956 | The singletonization and the tagging of a set contain the same singletons. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵)) | ||
| Theorem | bj-tagci 36957 | Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) | ||
| Theorem | bj-tagcg 36958 | Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ tag 𝐵)) | ||
| Theorem | bj-taginv 36959* | Inverse of tagging. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴} | ||
| Theorem | bj-tagex 36960 | A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) | ||
| Theorem | bj-xtageq 36961 | The products of a given class and the tagging of either of two equal classes are equal. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 × tag 𝐴) = (𝐶 × tag 𝐵)) | ||
| Theorem | bj-xtagex 36962 | The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) | ||
This subsection gives a definition of an ordered pair, or couple (2-tuple), that "works" for proper classes, as evidenced by Theorems bj-2uplth 36994 and bj-2uplex 36995, and more importantly, bj-pr21val 36986 and bj-pr22val 36992. In particular, one can define well-behaved tuples of classes. Classes in ZF(C) are only virtual, and in particular they cannot be quantified over. Theorem bj-2uplex 36995 has advantages: in view of df-br 5096, several sethood antecedents could be removed from existing theorems. For instance, relsnopg 5750 (resp. relsnop 5752) would hold without antecedents (resp. hypotheses) thanks to relsnb 5749). Also, the antecedent Rel 𝑅 could be removed from brrelex12 5675 and related theorems brrelex*, and, as a consequence, of multiple later theorems. Similarly, df-struct 17076 could be simplified by removing the exception currently made for the empty set. The projections are denoted by pr1 and pr2 and the couple with projections (or coordinates) 𝐴 and 𝐵 is denoted by ⦅𝐴, 𝐵⦆. Note that this definition uses the Kuratowski definition (df-op 4586) as a preliminary definition, and then "redefines" a couple. It could also use the "short" version of the Kuratowski pair (see opthreg 9533) without needing the axiom of regularity; it could even bypass this definition by "inlining" it. This definition is due to Anthony Morse and is expounded (with idiosyncratic notation) in Anthony P. Morse, A Theory of Sets, Academic Press, 1965 (second edition 1986). Note that this extends in a natural way to tuples. A variation of this definition is justified in opthprc 5687, but here we use "tagged versions" of the factors (see df-bj-tag 36948) so that an m-tuple can equal an n-tuple only when m = n (and the projections are the same). A comparison of the different definitions of tuples (strangely not mentioning Morse's), is given in Dominic McCarty and Dana Scott, Reconsidering ordered pairs, Bull. Symbolic Logic, Volume 14, Issue 3 (Sept. 2008), 379--397. where a recursive definition of tuples is given that avoids the two-step definition of tuples and that can be adapted to various set theories. Finally, another survey is Akihiro Kanamori, The empty set, the singleton, and the ordered pair, Bull. Symbolic Logic, Volume 9, Number 3 (Sept. 2003), 273--298. (available at http://math.bu.edu/people/aki/8.pdf 36948) | ||
| Syntax | bj-cproj 36963 | Syntax for the class projection. (Contributed by BJ, 6-Apr-2019.) |
| class (𝐴 Proj 𝐵) | ||
| Definition | df-bj-proj 36964* | Definition of the class projection corresponding to tagged tuples. The expression (𝐴 Proj 𝐵) denotes the projection on the A^th component. (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.) |
| ⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} | ||
| Theorem | bj-projeq 36965 | Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷))) | ||
| Theorem | bj-projeq2 36966 | Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶)) | ||
| Theorem | bj-projun 36967 | The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) | ||
| Theorem | bj-projex 36968 | Sethood of the class projection. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 Proj 𝐵) ∈ V) | ||
| Theorem | bj-projval 36969 | Value of the class projection. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐵 = 𝐴, 𝐶, ∅)) | ||
| Syntax | bj-c1upl 36970 | Syntax for Morse monuple. (Contributed by BJ, 6-Apr-2019.) |
| class ⦅𝐴⦆ | ||
| Definition | df-bj-1upl 36971 | Definition of the Morse monuple (1-tuple). This is not useful per se, but is used as a step towards the definition of couples (2-tuples, or ordered pairs). The reason for "tagging" the set is so that an m-tuple and an n-tuple be equal only when m = n. Note that with this definition, the 0-tuple is the empty set. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-2upleq 36985, bj-2uplth 36994, bj-2uplex 36995, and the properties of the projections (see df-bj-pr1 36974 and df-bj-pr2 36988). (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.) |
| ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | ||
| Theorem | bj-1upleq 36972 | Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | ||
| Syntax | bj-cpr1 36973 | Syntax for the first class tuple projection. (Contributed by BJ, 6-Apr-2019.) |
| class pr1 𝐴 | ||
| Definition | df-bj-pr1 36974 | Definition of the first projection of a class tuple. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-pr1eq 36975, bj-pr11val 36978, bj-pr21val 36986, bj-pr1ex 36979. (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.) |
| ⊢ pr1 𝐴 = (∅ Proj 𝐴) | ||
| Theorem | bj-pr1eq 36975 | Substitution property for pr1. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 = 𝐵 → pr1 𝐴 = pr1 𝐵) | ||
| Theorem | bj-pr1un 36976 | The first projection preserves unions. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ pr1 (𝐴 ∪ 𝐵) = (pr1 𝐴 ∪ pr1 𝐵) | ||
| Theorem | bj-pr1val 36977 | Value of the first projection. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ pr1 ({𝐴} × tag 𝐵) = if(𝐴 = ∅, 𝐵, ∅) | ||
| Theorem | bj-pr11val 36978 | Value of the first projection of a monuple. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ pr1 ⦅𝐴⦆ = 𝐴 | ||
| Theorem | bj-pr1ex 36979 | Sethood of the first projection. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → pr1 𝐴 ∈ V) | ||
| Theorem | bj-1uplth 36980 | The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) | ||
| Theorem | bj-1uplex 36981 | A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) | ||
| Theorem | bj-1upln0 36982 | A monuple is nonempty. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ ⦅𝐴⦆ ≠ ∅ | ||
| Syntax | bj-c2uple 36983 | Syntax for Morse couple. (Contributed by BJ, 6-Oct-2018.) |
| class ⦅𝐴, 𝐵⦆ | ||
| Definition | df-bj-2upl 36984 | Definition of the Morse couple. See df-bj-1upl 36971. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-2upleq 36985, bj-2uplth 36994, bj-2uplex 36995, and the properties of the projections (see df-bj-pr1 36974 and df-bj-pr2 36988). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.) |
| ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | ||
| Theorem | bj-2upleq 36985 | Substitution property for ⦅ − , − ⦆. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) | ||
| Theorem | bj-pr21val 36986 | Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 | ||
| Syntax | bj-cpr2 36987 | Syntax for the second class tuple projection. (Contributed by BJ, 6-Oct-2018.) |
| class pr2 𝐴 | ||
| Definition | df-bj-pr2 36988 | Definition of the second projection of a class tuple. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-pr2eq 36989, bj-pr22val 36992, bj-pr2ex 36993. (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.) |
| ⊢ pr2 𝐴 = (1o Proj 𝐴) | ||
| Theorem | bj-pr2eq 36989 | Substitution property for pr2. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵) | ||
| Theorem | bj-pr2un 36990 | The second projection preserves unions. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ pr2 (𝐴 ∪ 𝐵) = (pr2 𝐴 ∪ pr2 𝐵) | ||
| Theorem | bj-pr2val 36991 | Value of the second projection. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ pr2 ({𝐴} × tag 𝐵) = if(𝐴 = 1o, 𝐵, ∅) | ||
| Theorem | bj-pr22val 36992 | Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 | ||
| Theorem | bj-pr2ex 36993 | Sethood of the second projection. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → pr2 𝐴 ∈ V) | ||
| Theorem | bj-2uplth 36994 | The characteristic property of couples. Note that this holds without sethood hypotheses (compare opth 5423). (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | bj-2uplex 36995 | A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | bj-2upln0 36996 | A couple is nonempty. (Contributed by BJ, 21-Apr-2019.) |
| ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ | ||
| Theorem | bj-2upln1upl 36997 | A couple is never equal to a monuple. It is in order to have this "non-clashing" result that tagging was used. Without tagging, we would have ⦅𝐴, ∅⦆ = ⦅𝐴⦆. Note that in the context of Morse tuples, it is natural to define the 0-tuple as the empty set. Therefore, the present theorem together with bj-1upln0 36982 and bj-2upln0 36996 tell us that an m-tuple may equal an n-tuple only when m = n, at least for m, n <= 2, but this result would extend as soon as we define n-tuples for higher values of n. (Contributed by BJ, 21-Apr-2019.) |
| ⊢ ⦅𝐴, 𝐵⦆ ≠ ⦅𝐶⦆ | ||
Some elementary set-theoretic operations "relative to a universe" (by which is merely meant some given class considered as a universe). | ||
| Theorem | bj-rcleqf 36998 | Relative version of cleqf 2920. (Contributed by BJ, 27-Dec-2023.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑉 ⇒ ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
| Theorem | bj-rcleq 36999* | Relative version of dfcleq 2722. (Contributed by BJ, 27-Dec-2023.) |
| ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
| Theorem | bj-reabeq 37000* | Relative form of eqabb 2867. (Contributed by BJ, 27-Dec-2023.) |
| ⊢ ((𝑉 ∩ 𝐴) = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝜑)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |