Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-luk-imim2i | Structured version Visualization version GIF version |
Description: Inference adding common antecedents in an implication. Copy of imim2i 16 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
wl-luk-imim2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
wl-luk-imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-luk-imim2i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | ax-luk1 35569 | . 2 ⊢ ((𝜒 → 𝜑) → ((𝜑 → 𝜓) → (𝜒 → 𝜓))) | |
3 | 1, 2 | wl-luk-mpi 35580 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-luk1 35569 ax-luk2 35570 ax-luk3 35571 |
This theorem is referenced by: wl-luk-imtrdi 35582 wl-luk-ja 35589 wl-impchain-mp-1 35599 wl-impchain-mp-2 35600 |
Copyright terms: Public domain | W3C validator |