| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-luk-imim2i | Structured version Visualization version GIF version | ||
| Description: Inference adding common antecedents in an implication. Copy of imim2i 16 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| wl-luk-imim2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| wl-luk-imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-luk-imim2i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | ax-luk1 37420 | . 2 ⊢ ((𝜒 → 𝜑) → ((𝜑 → 𝜓) → (𝜒 → 𝜓))) | |
| 3 | 1, 2 | wl-luk-mpi 37431 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-luk1 37420 ax-luk2 37421 ax-luk3 37422 |
| This theorem is referenced by: wl-luk-imtrdi 37433 wl-luk-ja 37440 wl-impchain-mp-1 37450 wl-impchain-mp-2 37451 |
| Copyright terms: Public domain | W3C validator |