Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-imtrid Structured version   Visualization version   GIF version

Theorem wl-luk-imtrid 35596
Description: A syllogism rule of inference. The first premise is used to replace the second antecedent of the second premise. Copy of syl5 34 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
wl-luk-imtrid.1 (𝜑𝜓)
wl-luk-imtrid.2 (𝜒 → (𝜓𝜃))
Assertion
Ref Expression
wl-luk-imtrid (𝜒 → (𝜑𝜃))

Proof of Theorem wl-luk-imtrid
StepHypRef Expression
1 wl-luk-imtrid.2 . 2 (𝜒 → (𝜓𝜃))
2 wl-luk-imtrid.1 . . 3 (𝜑𝜓)
32wl-luk-imim1i 35594 . 2 ((𝜓𝜃) → (𝜑𝜃))
41, 3wl-luk-syl 35595 1 (𝜒 → (𝜑𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35590
This theorem is referenced by:  wl-luk-con4i  35598  wl-luk-mpi  35601  wl-luk-ax3  35604  wl-luk-com12  35607  wl-luk-con1i  35609  wl-luk-ja  35610  wl-luk-pm2.04  35616
  Copyright terms: Public domain W3C validator