New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax10-16 | Unicode version |
Description: This theorem shows that, given ax-16 2144, we can derive a version of ax-10 2140. However, it is weaker than ax-10 2140 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 27-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax10-16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-16 2144 | . . . 4 | |
2 | 1 | alrimiv 1631 | . . 3 |
3 | 2 | a5i-o 2150 | . 2 |
4 | equequ1 1684 | . . . . . 6 | |
5 | 4 | cbvalv 2002 | . . . . . . 7 |
6 | 5 | a1i 10 | . . . . . 6 |
7 | 4, 6 | imbi12d 311 | . . . . 5 |
8 | 7 | albidv 1625 | . . . 4 |
9 | 8 | cbvalv 2002 | . . 3 |
10 | 9 | biimpi 186 | . 2 |
11 | nfa1-o 2166 | . . . . . . 7 | |
12 | 11 | 19.23 1801 | . . . . . 6 |
13 | 12 | albii 1566 | . . . . 5 |
14 | a9ev 1656 | . . . . . . . 8 | |
15 | pm2.27 35 | . . . . . . . 8 | |
16 | 14, 15 | ax-mp 5 | . . . . . . 7 |
17 | 16 | alimi 1559 | . . . . . 6 |
18 | equequ2 1686 | . . . . . . . . 9 | |
19 | 18 | spv 1998 | . . . . . . . 8 |
20 | 19 | sps-o 2159 | . . . . . . 7 |
21 | 20 | a7s 1735 | . . . . . 6 |
22 | 17, 21 | syl 15 | . . . . 5 |
23 | 13, 22 | sylbi 187 | . . . 4 |
24 | 23 | a7s 1735 | . . 3 |
25 | 24 | a5i-o 2150 | . 2 |
26 | 3, 10, 25 | 3syl 18 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wal 1540 wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-4 2135 ax-5o 2136 ax-6o 2137 ax-16 2144 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |