Step | Hyp | Ref
| Expression |
1 | | ax-16 2144 |
. . . 4
⊢ (∀x x = z →
(x = w
→ ∀x x = w)) |
2 | 1 | alrimiv 1631 |
. . 3
⊢ (∀x x = z →
∀w(x = w → ∀x x = w)) |
3 | 2 | a5i-o 2150 |
. 2
⊢ (∀x x = z →
∀x∀w(x = w →
∀x
x = w)) |
4 | | equequ1 1684 |
. . . . . 6
⊢ (x = z →
(x = w
↔ z = w)) |
5 | 4 | cbvalv 2002 |
. . . . . . 7
⊢ (∀x x = w ↔
∀z
z = w) |
6 | 5 | a1i 10 |
. . . . . 6
⊢ (x = z →
(∀x
x = w
↔ ∀z z = w)) |
7 | 4, 6 | imbi12d 311 |
. . . . 5
⊢ (x = z →
((x = w
→ ∀x x = w) ↔ (z =
w → ∀z z = w))) |
8 | 7 | albidv 1625 |
. . . 4
⊢ (x = z →
(∀w(x = w → ∀x x = w) ↔
∀w(z = w → ∀z z = w))) |
9 | 8 | cbvalv 2002 |
. . 3
⊢ (∀x∀w(x = w →
∀x
x = w)
↔ ∀z∀w(z = w → ∀z z = w)) |
10 | 9 | biimpi 186 |
. 2
⊢ (∀x∀w(x = w →
∀x
x = w)
→ ∀z∀w(z = w → ∀z z = w)) |
11 | | nfa1-o 2166 |
. . . . . . 7
⊢ Ⅎz∀z z = w |
12 | 11 | 19.23 1801 |
. . . . . 6
⊢ (∀z(z = w →
∀z
z = w)
↔ (∃z z = w → ∀z z = w)) |
13 | 12 | albii 1566 |
. . . . 5
⊢ (∀w∀z(z = w →
∀z
z = w)
↔ ∀w(∃z z = w → ∀z z = w)) |
14 | | a9ev 1656 |
. . . . . . . 8
⊢ ∃z z = w |
15 | | pm2.27 35 |
. . . . . . . 8
⊢ (∃z z = w →
((∃z
z = w
→ ∀z z = w) → ∀z z = w)) |
16 | 14, 15 | ax-mp 5 |
. . . . . . 7
⊢ ((∃z z = w →
∀z
z = w)
→ ∀z z = w) |
17 | 16 | alimi 1559 |
. . . . . 6
⊢ (∀w(∃z z = w →
∀z
z = w)
→ ∀w∀z z = w) |
18 | | equequ2 1686 |
. . . . . . . . 9
⊢ (w = x →
(z = w
↔ z = x)) |
19 | 18 | spv 1998 |
. . . . . . . 8
⊢ (∀w z = w →
z = x) |
20 | 19 | sps-o 2159 |
. . . . . . 7
⊢ (∀z∀w z = w →
z = x) |
21 | 20 | a7s 1735 |
. . . . . 6
⊢ (∀w∀z z = w →
z = x) |
22 | 17, 21 | syl 15 |
. . . . 5
⊢ (∀w(∃z z = w →
∀z
z = w)
→ z = x) |
23 | 13, 22 | sylbi 187 |
. . . 4
⊢ (∀w∀z(z = w →
∀z
z = w)
→ z = x) |
24 | 23 | a7s 1735 |
. . 3
⊢ (∀z∀w(z = w →
∀z
z = w)
→ z = x) |
25 | 24 | a5i-o 2150 |
. 2
⊢ (∀z∀w(z = w →
∀z
z = w)
→ ∀z z = x) |
26 | 3, 10, 25 | 3syl 18 |
1
⊢ (∀x x = z →
∀z
z = x) |