![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > biimt | Unicode version |
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
biimt |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm2.27 35 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbid2 195 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: pm5.5 326 a1bi 327 mtt 329 abai 770 dedlem0a 918 ceqsralt 2883 reu8 3033 csbiebt 3173 r19.3rz 3642 r19.3rzv 3644 ralidm 3654 fncnv 5159 |
Copyright terms: Public domain | W3C validator |