New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reu8 | Unicode version |
Description: Restricted unique existence using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
Ref | Expression |
---|---|
rmo4.1 |
Ref | Expression |
---|---|
reu8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmo4.1 | . . 3 | |
2 | 1 | cbvreuv 2838 | . 2 |
3 | reu6 3026 | . 2 | |
4 | dfbi2 609 | . . . . 5 | |
5 | 4 | ralbii 2639 | . . . 4 |
6 | ancom 437 | . . . . . 6 | |
7 | equcom 1680 | . . . . . . . . . 10 | |
8 | 7 | imbi2i 303 | . . . . . . . . 9 |
9 | 8 | ralbii 2639 | . . . . . . . 8 |
10 | 9 | a1i 10 | . . . . . . 7 |
11 | biimt 325 | . . . . . . . 8 | |
12 | df-ral 2620 | . . . . . . . . 9 | |
13 | bi2.04 350 | . . . . . . . . . 10 | |
14 | 13 | albii 1566 | . . . . . . . . 9 |
15 | vex 2863 | . . . . . . . . . 10 | |
16 | eleq1 2413 | . . . . . . . . . . . . 13 | |
17 | 16, 1 | imbi12d 311 | . . . . . . . . . . . 12 |
18 | 17 | bicomd 192 | . . . . . . . . . . 11 |
19 | 18 | equcoms 1681 | . . . . . . . . . 10 |
20 | 15, 19 | ceqsalv 2886 | . . . . . . . . 9 |
21 | 12, 14, 20 | 3bitrri 263 | . . . . . . . 8 |
22 | 11, 21 | syl6bb 252 | . . . . . . 7 |
23 | 10, 22 | anbi12d 691 | . . . . . 6 |
24 | 6, 23 | syl5bb 248 | . . . . 5 |
25 | r19.26 2747 | . . . . 5 | |
26 | 24, 25 | syl6rbbr 255 | . . . 4 |
27 | 5, 26 | syl5bb 248 | . . 3 |
28 | 27 | rexbiia 2648 | . 2 |
29 | 2, 3, 28 | 3bitri 262 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wceq 1642 wcel 1710 wral 2615 wrex 2616 wreu 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-ral 2620 df-rex 2621 df-reu 2622 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |