| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > reu8 | Unicode version | ||
| Description: Restricted unique existence using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
| Ref | Expression |
|---|---|
| rmo4.1 |
|
| Ref | Expression |
|---|---|
| reu8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo4.1 |
. . 3
| |
| 2 | 1 | cbvreuv 2838 |
. 2
|
| 3 | reu6 3026 |
. 2
| |
| 4 | dfbi2 609 |
. . . . 5
| |
| 5 | 4 | ralbii 2639 |
. . . 4
|
| 6 | ancom 437 |
. . . . . 6
| |
| 7 | equcom 1680 |
. . . . . . . . . 10
| |
| 8 | 7 | imbi2i 303 |
. . . . . . . . 9
|
| 9 | 8 | ralbii 2639 |
. . . . . . . 8
|
| 10 | 9 | a1i 10 |
. . . . . . 7
|
| 11 | biimt 325 |
. . . . . . . 8
| |
| 12 | df-ral 2620 |
. . . . . . . . 9
| |
| 13 | bi2.04 350 |
. . . . . . . . . 10
| |
| 14 | 13 | albii 1566 |
. . . . . . . . 9
|
| 15 | vex 2863 |
. . . . . . . . . 10
| |
| 16 | eleq1 2413 |
. . . . . . . . . . . . 13
| |
| 17 | 16, 1 | imbi12d 311 |
. . . . . . . . . . . 12
|
| 18 | 17 | bicomd 192 |
. . . . . . . . . . 11
|
| 19 | 18 | equcoms 1681 |
. . . . . . . . . 10
|
| 20 | 15, 19 | ceqsalv 2886 |
. . . . . . . . 9
|
| 21 | 12, 14, 20 | 3bitrri 263 |
. . . . . . . 8
|
| 22 | 11, 21 | syl6bb 252 |
. . . . . . 7
|
| 23 | 10, 22 | anbi12d 691 |
. . . . . 6
|
| 24 | 6, 23 | syl5bb 248 |
. . . . 5
|
| 25 | r19.26 2747 |
. . . . 5
| |
| 26 | 24, 25 | syl6rbbr 255 |
. . . 4
|
| 27 | 5, 26 | syl5bb 248 |
. . 3
|
| 28 | 27 | rexbiia 2648 |
. 2
|
| 29 | 2, 3, 28 | 3bitri 262 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-ral 2620 df-rex 2621 df-reu 2622 df-v 2862 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |