New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbiebt | Unicode version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3177.) (Contributed by NM, 11-Nov-2005.) |
Ref | Expression |
---|---|
csbiebt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 | |
2 | spsbc 3059 | . . . . 5 | |
3 | 2 | adantr 451 | . . . 4 |
4 | simpl 443 | . . . . 5 | |
5 | biimt 325 | . . . . . . 7 | |
6 | csbeq1a 3145 | . . . . . . . 8 | |
7 | 6 | eqeq1d 2361 | . . . . . . 7 |
8 | 5, 7 | bitr3d 246 | . . . . . 6 |
9 | 8 | adantl 452 | . . . . 5 |
10 | nfv 1619 | . . . . . 6 | |
11 | nfnfc1 2493 | . . . . . 6 | |
12 | 10, 11 | nfan 1824 | . . . . 5 |
13 | nfcsb1v 3169 | . . . . . . 7 | |
14 | 13 | a1i 10 | . . . . . 6 |
15 | simpr 447 | . . . . . 6 | |
16 | 14, 15 | nfeqd 2504 | . . . . 5 |
17 | 4, 9, 12, 16 | sbciedf 3082 | . . . 4 |
18 | 3, 17 | sylibd 205 | . . 3 |
19 | 13 | a1i 10 | . . . . . . . 8 |
20 | id 19 | . . . . . . . 8 | |
21 | 19, 20 | nfeqd 2504 | . . . . . . 7 |
22 | 11, 21 | nfan1 1881 | . . . . . 6 |
23 | 7 | biimprcd 216 | . . . . . . 7 |
24 | 23 | adantl 452 | . . . . . 6 |
25 | 22, 24 | alrimi 1765 | . . . . 5 |
26 | 25 | ex 423 | . . . 4 |
27 | 26 | adantl 452 | . . 3 |
28 | 18, 27 | impbid 183 | . 2 |
29 | 1, 28 | sylan 457 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wceq 1642 wcel 1710 wnfc 2477 cvv 2860 wsbc 3047 csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: csbiedf 3174 csbieb 3175 csbiegf 3177 |
Copyright terms: Public domain | W3C validator |