| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ralidm | Unicode version | ||
| Description: Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) | 
| Ref | Expression | 
|---|---|
| ralidm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rzal 3652 | 
. . 3
 | |
| 2 | rzal 3652 | 
. . 3
 | |
| 3 | 1, 2 | 2thd 231 | 
. 2
 | 
| 4 | neq0 3561 | 
. . 3
 | |
| 5 | biimt 325 | 
. . . 4
 | |
| 6 | df-ral 2620 | 
. . . . 5
 | |
| 7 | nfra1 2665 | 
. . . . . 6
 | |
| 8 | 7 | 19.23 1801 | 
. . . . 5
 | 
| 9 | 6, 8 | bitri 240 | 
. . . 4
 | 
| 10 | 5, 9 | syl6rbbr 255 | 
. . 3
 | 
| 11 | 4, 10 | sylbi 187 | 
. 2
 | 
| 12 | 3, 11 | pm2.61i 156 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |