New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > coeq12i | Unicode version |
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
Ref | Expression |
---|---|
coeq12i.1 | |
coeq12i.2 |
Ref | Expression |
---|---|
coeq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq12i.1 | . . 3 | |
2 | 1 | coeq1i 4876 | . 2 |
3 | coeq12i.2 | . . 3 | |
4 | 3 | coeq2i 4877 | . 2 |
5 | 2, 4 | eqtri 2373 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wceq 1642 ccom 4721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-opab 4623 df-br 4640 df-co 4726 |
This theorem is referenced by: cnvpprod 5841 |
Copyright terms: Public domain | W3C validator |