![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > coeq2i | Unicode version |
Description: Equality inference for composition of two classes. (Contributed by set.mm contributors, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
coeq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | coeq2 4875 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 8 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-opab 4623 df-br 4640 df-co 4726 |
This theorem is referenced by: coeq12i 4880 coi2 5095 funi 5137 f1ococnv1 5310 |
Copyright terms: Public domain | W3C validator |