New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equveli | Unicode version |
Description: A variable elimination law for equality with no distinct variable requirements. (Compare equvini 1987.) (Contributed by NM, 1-Mar-2013.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
equveli |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1611 | . 2 | |
2 | equequ1 1684 | . . . . . . . 8 | |
3 | equequ1 1684 | . . . . . . . 8 | |
4 | 2, 3 | imbi12d 311 | . . . . . . 7 |
5 | 4 | sps 1754 | . . . . . 6 |
6 | 5 | dral1 1965 | . . . . 5 |
7 | equid 1676 | . . . . . . 7 | |
8 | sp 1747 | . . . . . . 7 | |
9 | 7, 8 | mpi 16 | . . . . . 6 |
10 | equcomi 1679 | . . . . . 6 | |
11 | 9, 10 | syl 15 | . . . . 5 |
12 | 6, 11 | syl6bi 219 | . . . 4 |
13 | 12 | adantld 453 | . . 3 |
14 | equequ1 1684 | . . . . . . . . . 10 | |
15 | equequ1 1684 | . . . . . . . . . 10 | |
16 | 14, 15 | imbi12d 311 | . . . . . . . . 9 |
17 | 16 | sps 1754 | . . . . . . . 8 |
18 | 17 | dral2 1966 | . . . . . . 7 |
19 | equid 1676 | . . . . . . . . . 10 | |
20 | 19 | a1bi 327 | . . . . . . . . 9 |
21 | 20 | biimpri 197 | . . . . . . . 8 |
22 | 21 | sps 1754 | . . . . . . 7 |
23 | 18, 22 | syl6bi 219 | . . . . . 6 |
24 | 23 | a1d 22 | . . . . 5 |
25 | nfeqf 1958 | . . . . . . 7 | |
26 | equtr 1682 | . . . . . . . . . 10 | |
27 | ax-8 1675 | . . . . . . . . . 10 | |
28 | 26, 27 | imim12d 68 | . . . . . . . . 9 |
29 | 19, 28 | mpii 39 | . . . . . . . 8 |
30 | 29 | ax-gen 1546 | . . . . . . 7 |
31 | spimt 1974 | . . . . . . 7 | |
32 | 25, 30, 31 | sylancl 643 | . . . . . 6 |
33 | 32 | ex 423 | . . . . 5 |
34 | 24, 33 | pm2.61i 156 | . . . 4 |
35 | 34 | adantrd 454 | . . 3 |
36 | 13, 35 | pm2.61i 156 | . 2 |
37 | 1, 36 | sylbi 187 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wal 1540 wnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |