NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  equveli Unicode version

Theorem equveli 1988
Description: A variable elimination law for equality with no distinct variable requirements. (Compare equvini 1987.) (Contributed by NM, 1-Mar-2013.) (Proof shortened by Mario Carneiro, 17-Oct-2016.)
Assertion
Ref Expression
equveli

Proof of Theorem equveli
StepHypRef Expression
1 albiim 1611 . 2
2 equequ1 1684 . . . . . . . 8
3 equequ1 1684 . . . . . . . 8
42, 3imbi12d 311 . . . . . . 7
54sps 1754 . . . . . 6
65dral1 1965 . . . . 5
7 equid 1676 . . . . . . 7
8 sp 1747 . . . . . . 7
97, 8mpi 16 . . . . . 6
10 equcomi 1679 . . . . . 6
119, 10syl 15 . . . . 5
126, 11syl6bi 219 . . . 4
1312adantld 453 . . 3
14 equequ1 1684 . . . . . . . . . 10
15 equequ1 1684 . . . . . . . . . 10
1614, 15imbi12d 311 . . . . . . . . 9
1716sps 1754 . . . . . . . 8
1817dral2 1966 . . . . . . 7
19 equid 1676 . . . . . . . . . 10
2019a1bi 327 . . . . . . . . 9
2120biimpri 197 . . . . . . . 8
2221sps 1754 . . . . . . 7
2318, 22syl6bi 219 . . . . . 6
2423a1d 22 . . . . 5
25 nfeqf 1958 . . . . . . 7  F/
26 equtr 1682 . . . . . . . . . 10
27 ax-8 1675 . . . . . . . . . 10
2826, 27imim12d 68 . . . . . . . . 9
2919, 28mpii 39 . . . . . . . 8
3029ax-gen 1546 . . . . . . 7
31 spimt 1974 . . . . . . 7  F/
3225, 30, 31sylancl 643 . . . . . 6
3332ex 423 . . . . 5
3424, 33pm2.61i 156 . . . 4
3534adantrd 454 . . 3
3613, 35pm2.61i 156 . 2
371, 36sylbi 187 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wa 358  wal 1540   F/wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator