Proof of Theorem equveli
Step | Hyp | Ref
| Expression |
1 | | albiim 1611 |
. 2
⊢ (∀z(z = x ↔
z = y)
↔ (∀z(z = x → z =
y) ∧ ∀z(z = y →
z = x))) |
2 | | equequ1 1684 |
. . . . . . . 8
⊢ (z = y →
(z = y
↔ y = y)) |
3 | | equequ1 1684 |
. . . . . . . 8
⊢ (z = y →
(z = x
↔ y = x)) |
4 | 2, 3 | imbi12d 311 |
. . . . . . 7
⊢ (z = y →
((z = y
→ z = x) ↔ (y =
y → y = x))) |
5 | 4 | sps 1754 |
. . . . . 6
⊢ (∀z z = y →
((z = y
→ z = x) ↔ (y =
y → y = x))) |
6 | 5 | dral1 1965 |
. . . . 5
⊢ (∀z z = y →
(∀z(z = y → z =
x) ↔ ∀y(y = y →
y = x))) |
7 | | equid 1676 |
. . . . . . 7
⊢ y = y |
8 | | sp 1747 |
. . . . . . 7
⊢ (∀y(y = y →
y = x)
→ (y = y → y =
x)) |
9 | 7, 8 | mpi 16 |
. . . . . 6
⊢ (∀y(y = y →
y = x)
→ y = x) |
10 | | equcomi 1679 |
. . . . . 6
⊢ (y = x →
x = y) |
11 | 9, 10 | syl 15 |
. . . . 5
⊢ (∀y(y = y →
y = x)
→ x = y) |
12 | 6, 11 | syl6bi 219 |
. . . 4
⊢ (∀z z = y →
(∀z(z = y → z =
x) → x = y)) |
13 | 12 | adantld 453 |
. . 3
⊢ (∀z z = y →
((∀z(z = x → z =
y) ∧ ∀z(z = y →
z = x))
→ x = y)) |
14 | | equequ1 1684 |
. . . . . . . . . 10
⊢ (z = x →
(z = x
↔ x = x)) |
15 | | equequ1 1684 |
. . . . . . . . . 10
⊢ (z = x →
(z = y
↔ x = y)) |
16 | 14, 15 | imbi12d 311 |
. . . . . . . . 9
⊢ (z = x →
((z = x
→ z = y) ↔ (x =
x → x = y))) |
17 | 16 | sps 1754 |
. . . . . . . 8
⊢ (∀z z = x →
((z = x
→ z = y) ↔ (x =
x → x = y))) |
18 | 17 | dral2 1966 |
. . . . . . 7
⊢ (∀z z = x →
(∀z(z = x → z =
y) ↔ ∀z(x = x →
x = y))) |
19 | | equid 1676 |
. . . . . . . . . 10
⊢ x = x |
20 | 19 | a1bi 327 |
. . . . . . . . 9
⊢ (x = y ↔
(x = x
→ x = y)) |
21 | 20 | biimpri 197 |
. . . . . . . 8
⊢ ((x = x →
x = y)
→ x = y) |
22 | 21 | sps 1754 |
. . . . . . 7
⊢ (∀z(x = x →
x = y)
→ x = y) |
23 | 18, 22 | syl6bi 219 |
. . . . . 6
⊢ (∀z z = x →
(∀z(z = x → z =
y) → x = y)) |
24 | 23 | a1d 22 |
. . . . 5
⊢ (∀z z = x →
(¬ ∀z z = y → (∀z(z = x →
z = y)
→ x = y))) |
25 | | nfeqf 1958 |
. . . . . . 7
⊢ ((¬ ∀z z = x ∧ ¬ ∀z z = y) →
Ⅎz x = y) |
26 | | equtr 1682 |
. . . . . . . . . 10
⊢ (z = x →
(x = x
→ z = x)) |
27 | | ax-8 1675 |
. . . . . . . . . 10
⊢ (z = x →
(z = y
→ x = y)) |
28 | 26, 27 | imim12d 68 |
. . . . . . . . 9
⊢ (z = x →
((z = x
→ z = y) → (x =
x → x = y))) |
29 | 19, 28 | mpii 39 |
. . . . . . . 8
⊢ (z = x →
((z = x
→ z = y) → x =
y)) |
30 | 29 | ax-gen 1546 |
. . . . . . 7
⊢ ∀z(z = x →
((z = x
→ z = y) → x =
y)) |
31 | | spimt 1974 |
. . . . . . 7
⊢ ((Ⅎz x = y ∧ ∀z(z = x →
((z = x
→ z = y) → x =
y))) → (∀z(z = x →
z = y)
→ x = y)) |
32 | 25, 30, 31 | sylancl 643 |
. . . . . 6
⊢ ((¬ ∀z z = x ∧ ¬ ∀z z = y) →
(∀z(z = x → z =
y) → x = y)) |
33 | 32 | ex 423 |
. . . . 5
⊢ (¬ ∀z z = x →
(¬ ∀z z = y → (∀z(z = x →
z = y)
→ x = y))) |
34 | 24, 33 | pm2.61i 156 |
. . . 4
⊢ (¬ ∀z z = y →
(∀z(z = x → z =
y) → x = y)) |
35 | 34 | adantrd 454 |
. . 3
⊢ (¬ ∀z z = y →
((∀z(z = x → z =
y) ∧ ∀z(z = y →
z = x))
→ x = y)) |
36 | 13, 35 | pm2.61i 156 |
. 2
⊢ ((∀z(z = x →
z = y)
∧ ∀z(z = y →
z = x))
→ x = y) |
37 | 1, 36 | sylbi 187 |
1
⊢ (∀z(z = x ↔
z = y)
→ x = y) |