NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  euabex Unicode version

Theorem euabex 4335
Description: If there is a unique object satisfying a property , then the set of all elements that satisfy exists. (Contributed by SF, 16-Jan-2015.)
Assertion
Ref Expression
euabex

Proof of Theorem euabex
StepHypRef Expression
1 dfeu2 4334 . 2 1c
2 elex 2868 . 2 1c
31, 2sylbi 187 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wcel 1710  weu 2204  cab 2339  cvv 2860  1cc1c 4135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-1c 4137
This theorem is referenced by:  dfiota4  4373
  Copyright terms: Public domain W3C validator