| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > dfiota4 | Unicode version | ||
| Description: Alternate definition of iota in terms of 1c. (Contributed by SF, 29-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| dfiota4 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iotauni 4352 | 
. . 3
 | |
| 2 | dfeu2 4334 | 
. . . . . . . 8
 | |
| 3 | snssi 3853 | 
. . . . . . . 8
 | |
| 4 | 2, 3 | sylbi 187 | 
. . . . . . 7
 | 
| 5 | df-ss 3260 | 
. . . . . . . 8
 | |
| 6 | incom 3449 | 
. . . . . . . . 9
 | |
| 7 | 6 | eqeq1i 2360 | 
. . . . . . . 8
 | 
| 8 | 5, 7 | bitri 240 | 
. . . . . . 7
 | 
| 9 | 4, 8 | sylib 188 | 
. . . . . 6
 | 
| 10 | 9 | unieqd 3903 | 
. . . . 5
 | 
| 11 | euabex 4335 | 
. . . . . 6
 | |
| 12 | unisng 3909 | 
. . . . . 6
 | |
| 13 | 11, 12 | syl 15 | 
. . . . 5
 | 
| 14 | 10, 13 | eqtrd 2385 | 
. . . 4
 | 
| 15 | 14 | unieqd 3903 | 
. . 3
 | 
| 16 | 1, 15 | eqtr4d 2388 | 
. 2
 | 
| 17 | iotanul 4355 | 
. . 3
 | |
| 18 | 2 | notbii 287 | 
. . . . . . . 8
 | 
| 19 | disjsn 3787 | 
. . . . . . . 8
 | |
| 20 | 18, 19 | bitr4i 243 | 
. . . . . . 7
 | 
| 21 | 20 | biimpi 186 | 
. . . . . 6
 | 
| 22 | 21 | unieqd 3903 | 
. . . . 5
 | 
| 23 | 22 | unieqd 3903 | 
. . . 4
 | 
| 24 | uni0 3919 | 
. . . . . 6
 | |
| 25 | 24 | unieqi 3902 | 
. . . . 5
 | 
| 26 | 25, 24 | eqtri 2373 | 
. . . 4
 | 
| 27 | 23, 26 | syl6eq 2401 | 
. . 3
 | 
| 28 | 17, 27 | eqtr4d 2388 | 
. 2
 | 
| 29 | 16, 28 | pm2.61i 156 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-uni 3893 df-1c 4137 df-iota 4340 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |