HomeHome New Foundations Explorer
Theorem List (p. 44 of 64)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 4301-4400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremimakex 4301 The image of a set under a set is a set. (Contributed by SF, 14-Jan-2015.)
   &       =>    k
 
Theoremdfpw12 4302 Alternate expression for unit power classes. (Contributed by SF, 26-Jan-2015.)
1 SIk k k
 
Theorempw1exg 4303 The unit power class preserves sethood. (Contributed by SF, 14-Jan-2015.)
1
 
Theorempw1ex 4304 The unit power class preserves sethood. (Contributed by SF, 14-Jan-2015.)
   =>    1
 
Theoreminsklem 4305* Lemma for ins2kexg 4306 and ins3kexg 4307. Equality for subsets of 1 1c k k . (Contributed by SF, 14-Jan-2015.)
1 1c k k    &    1 1c k k    =>   
 
Theoremins2kexg 4306 Ins2k preserves sethood. (Contributed by SF, 14-Jan-2015.)
Ins2k
 
Theoremins3kexg 4307 Ins3k preserves sethood. (Contributed by SF, 14-Jan-2015.)
Ins3k
 
Theoremins2kex 4308 Ins2k preserves sethood. (Contributed by SF, 14-Jan-2015.)
   =>    Ins2k
 
Theoremins3kex 4309 Ins3k preserves sethood. (Contributed by SF, 14-Jan-2015.)
   =>    Ins3k
 
Theoremcokexg 4310 The Kuratowski composition of two sets is a set. (Contributed by SF, 14-Jan-2015.)
k
 
Theoremcokex 4311 The Kuratowski composition of two sets is a set. (Contributed by SF, 14-Jan-2015.)
   &       =>    k
 
Theoremimagekexg 4312 The Kuratowski image functor preserves sethood. (Contributed by SF, 14-Jan-2015.)
Imagek
 
Theoremimagekex 4313 The Kuratowski image functor preserves sethood. (Contributed by SF, 14-Jan-2015.)
   =>    Imagek
 
Theoremdfidk2 4314 Definition of k in terms of Sk. (Contributed by SF, 14-Jan-2015.)
k Sk k Sk
 
Theoremidkex 4315 The Kuratowski identity relationship is a set. (Contributed by SF, 14-Jan-2015.)
k
 
Theoremdfuni3 4316 Alternate definition of class union for existence proof. (Contributed by SF, 14-Jan-2015.)
1k Sk k
 
Theoremuniexg 4317 The sum class of a set is a set. (Contributed by SF, 14-Jan-2015.)
 
Theoremuniex 4318 The sum class of a set is a set. (Contributed by SF, 14-Jan-2015.)
   =>   
 
Theoremdfint3 4319 Alternate definition of class intersection for the existence proof. (Contributed by SF, 14-Jan-2015.)
∼ ⋃1kSk k
 
Theoremintexg 4320 The intersection of a set is a set. (Contributed by SF, 14-Jan-2015.)
 
Theoremintex 4321 The intersection of a set is a set. (Contributed by SF, 14-Jan-2015.)
   =>   
 
Theoremsetswith 4322* Two ways to express the class of all sets that contain . (Contributed by SF, 14-Jan-2015.)
Sk k
 
Theoremsetswithex 4323* The class of all sets that contain exist. (Contributed by SF, 14-Jan-2015.)
 
Theoremndisjrelk 4324 Membership in a particular Kuratowski relationship is equivalent to non-disjointedness. (Contributed by SF, 15-Jan-2015.)
   &       =>    Ins3k Sk Ins2k Sk k1 1 1c
 
Theoremabexv 4325* When does not occur in , is a set. (Contributed by SF, 17-Jan-2015.)
 
Theoremunipw1 4326 The union of a unit power class is the original set. (Contributed by SF, 20-Jan-2015.)
1
 
Theorempw1exb 4327 Biconditional existence for unit power class. (Contributed by SF, 20-Jan-2015.)
1
 
Theoremdfpw2 4328 Definition of power set for existence proof. (Contributed by SF, 21-Jan-2015.)
Sk 1 k k1c
 
Theorempwexg 4329 The power class of a set is a set. (Contributed by SF, 21-Jan-2015.)
 
Theorempwex 4330 The power class of a set is a set. (Contributed by SF, 21-Jan-2015.)
   =>   
 
Theoremeqpw1uni 4331 A class of singletons is equal to the unit power class of its union. (Contributed by SF, 26-Jan-2015.)
1c 1
 
Theorempw1equn 4332* A condition for a unit power class to equal a union. (Contributed by SF, 26-Jan-2015.)
   &       =>    1 1 1
 
Theorempw1eqadj 4333* A condition for a unit power class to work out to an adjunction. (Contributed by SF, 26-Jan-2015.)
   &       =>    1 1
 
Theoremdfeu2 4334 Alternate definition of existential uniqueness in terms of abstraction. (Contributed by SF, 29-Jan-2015.)
1c
 
Theoremeuabex 4335 If there is a unique object satisfying a property , then the set of all elements that satisfy exists. (Contributed by SF, 16-Jan-2015.)
 
Theoremsspw1 4336* A condition for being a subclass of a unit power class. Corollary 2 of theorem IX.6.14 of [Rosser] p. 255. (Contributed by SF, 3-Feb-2015.)
   =>    1 1
 
Theoremsspw12 4337* A set is a subset of cardinal one iff it is the unit power class of some other set. (Contributed by SF, 17-Mar-2015.)
   =>    1c 1
 
2.2.9  Definite description binder (inverted iota)
 
Syntaxcio 4338 Extend class notation with Russell's definition description binder (inverted iota).
 
Theoremiotajust 4339* Soundness justification theorem for df-iota 4340. (Contributed by Andrew Salmon, 29-Jun-2011.)
 
Definitiondf-iota 4340* Define Russell's definition description binder, which can be read as "the unique such that ," where ordinarily contains as a free variable. Our definition is meaningful only when there is exactly one such that is true (see iotaval 4351); otherwise, it evaluates to the empty set (see iotanul 4355). Russell used the inverted iota symbol to represent the binder. (Contributed by SF, 12-Jan-2015.)
 
Theoremdfiota2 4341* Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.)
 
Theoremnfiota1 4342 Bound-variable hypothesis builder for the class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 F/_
 
Theoremnfiotad 4343 Deduction version of nfiota 4344. (Contributed by NM, 18-Feb-2013.)

 F/   &     F/   =>     F/_
 
Theoremnfiota 4344 Bound-variable hypothesis builder for the class. (Contributed by NM, 23-Aug-2011.)

 F/   =>     F/_
 
Theoremcbviota 4345 Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
   &    
 F/   &     F/   =>   
 
Theoremcbviotav 4346* Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
   =>   
 
Theoremsb8iota 4347 Variable substitution in description binder. Compare sb8eu 2222. (Contributed by NM, 18-Mar-2013.)

 F/   =>   
 
Theoremiotaeq 4348 Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
 
Theoremiotabi 4349 Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
 
Theoremuniabio 4350* Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
 
Theoremiotaval 4351* Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
 
Theoremiotauni 4352 Equivalence between two different forms of . (Contributed by Andrew Salmon, 12-Jul-2011.)
 
Theoremiotaint 4353 Equivalence between two different forms of . (Contributed by Mario Carneiro, 24-Dec-2016.)
 
Theoremiota1 4354 Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
 
Theoremiotanul 4355 Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one that satisfies . (Contributed by Andrew Salmon, 11-Jul-2011.)
 
Theoremiotassuni 4356 The class is a subset of the union of all elements satisfying . (Contributed by Mario Carneiro, 24-Dec-2016.)
 
Theoremiotaex 4357 Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.)
 
Theoremiota4 4358 Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
 [.  ].
 
Theoremiota4an 4359 Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
 [.  ].
 
Theoremiota5 4360* A method for computing iota. (Contributed by NM, 17-Sep-2013.)
   =>   
 
Theoremiotabidv 4361* Formula-building deduction rule for iota. (Contributed by NM, 20-Aug-2011.)
   =>   
 
Theoremiotabii 4362 Formula-building deduction rule for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
   =>   
 
Theoremiotacl 4363 Membership law for descriptions.

This can useful for expanding an unbounded iota-based definition (see df-iota 4340). If you have a bounded iota-based definition, riotacl2 in set.mm may be useful.

(Contributed by Andrew Salmon, 1-Aug-2011.)

 
Theoremreiotacl2 4364 Membership law for descriptions. (Contributed by SF, 21-Aug-2011.)
 
Theoremreiotacl 4365* Membership law for descriptions. (Contributed by SF, 21-Aug-2011.)
 
Theoremiota2df 4366 A condition that allows us to represent "the unique element such that " with a class expression . (Contributed by NM, 30-Dec-2014.)
   &       &       &     F/   &     F/   &     F/_   =>   
 
Theoremiota2d 4367* A condition that allows us to represent "the unique element such that " with a class expression . (Contributed by NM, 30-Dec-2014.)
   &       &       =>   
 
Theoremiota2 4368* The unique element such that . (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
   =>   
 
Theoremreiota2 4369* A condition allowing us to represent "the unique element in such that " with a class expression . (Contributed by Scott Fenton, 7-Jan-2018.)
   =>   
 
Theoremsniota 4370 A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
 
Theoremdfiota3 4371 The operation using the operator. (Contributed by Scott Fenton, 6-Oct-2017.)
 
Theoremcsbiotag 4372* Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.)
 [.  ].
 
Theoremdfiota4 4373 Alternate definition of iota in terms of 1c. (Contributed by SF, 29-Jan-2015.)
1c
 
2.2.10  Finite cardinals
 
Syntaxcnnc 4374 Extend the definition of a class to include the set of finite cardinals.
Nn
 
Syntaxc0c 4375 Extend the definition of a class to include cardinal zero.
0c
 
Syntaxcplc 4376 Extend the definition of a class to include cardinal addition.
 
Syntaxcfin 4377 Extend the definition of a class to include the set of all finite sets.
Fin
 
Definitiondf-0c 4378 Define cardinal zero. (Contributed by SF, 12-Jan-2015.)
0c
 
Definitiondf-addc 4379* Define cardinal addition. Definition from [Rosser] p. 275. (Contributed by SF, 12-Jan-2015.)
 
Definitiondf-nnc 4380* Define the finite cardinals. Definition from [Rosser] p. 275. (Contributed by SF, 12-Jan-2015.)
Nn 0c 1c
 
Definitiondf-fin 4381 Define the set of all finite sets. Definition from [Rosser], p. 417. (Contributed by SF, 12-Jan-2015.)
Fin Nn
 
Theoremdfaddc2 4382 Alternate definition of cardinal addition to establish stratification. (Contributed by SF, 15-Jan-2015.)
Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 k
 
Theoremaddcexlem 4383 The expression at the heart of dfaddc2 4382 is a set. (Contributed by SF, 17-Jan-2015.)
Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1c
 
Theoremaddceq1 4384 Equality law for cardinal addition. (Contributed by SF, 15-Jan-2015.)
 
Theoremaddceq2 4385 Equality law for cardinal addition. (Contributed by SF, 15-Jan-2015.)
 
Theoremaddceq12 4386 Equality law for cardinal addition. (Contributed by SF, 15-Jan-2015.)
 
Theoremaddceq1i 4387 Equality inference for cardinal addition. (Contributed by SF, 3-Feb-2015.)
   =>   
 
Theoremaddceq2i 4388 Equality inference for cardinal addition. (Contributed by SF, 3-Feb-2015.)
   =>   
 
Theoremaddceq12i 4389 Equality inference for cardinal addition. (Contributed by SF, 3-Feb-2015.)
   &       =>   
 
Theoremaddceq1d 4390 Equality deduction for cardinal addition. (Contributed by SF, 3-Feb-2015.)
   =>   
 
Theoremaddceq2d 4391 Equality deduction for cardinal addition. (Contributed by SF, 3-Feb-2015.)
   =>   
 
Theoremaddceq12d 4392 Equality deduction for cardinal addition. (Contributed by SF, 3-Feb-2015.)
   &       =>   
 
Theorem0cex 4393 Cardinal zero is a set. (Contributed by SF, 14-Jan-2015.)
0c
 
Theoremaddcexg 4394 The cardinal sum of two sets is a set. (Contributed by SF, 15-Jan-2015.)
 
Theoremaddcex 4395 The cardinal sum of two sets is a set. (Contributed by SF, 25-Jan-2015.)
   &       =>   
 
Theoremdfnnc2 4396 Definition of the finite cardinals for existence theorem. (Contributed by SF, 14-Jan-2015.)
Nn 0c Sk Sk k SIk Imagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1ck1c
 
Theoremnncex 4397 The class of all finite cardinals is a set. (Contributed by SF, 14-Jan-2015.)
Nn
 
Theoremfinex 4398 The class of all finite sets is a set. (Contributed by SF, 19-Jan-2015.)
Fin
 
Theoremeladdc 4399* Membership in cardinal addition. Theorem X.1.1 of [Rosser] p. 275. (Contributed by SF, 16-Jan-2015.)
 
Theoremeladdci 4400 Inference form of membership in cardinal addition. (Contributed by SF, 26-Jan-2015.)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6339
  Copyright terms: Public domain < Previous  Next >