| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > excxor | Unicode version | ||
| Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.) |
| Ref | Expression |
|---|---|
| excxor |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor 1305 |
. 2
| |
| 2 | xor 861 |
. 2
| |
| 3 | ancom 437 |
. . 3
| |
| 4 | 3 | orbi2i 505 |
. 2
|
| 5 | 1, 2, 4 | 3bitri 262 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-xor 1305 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |