New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ancom | Unicode version |
Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
Ref | Expression |
---|---|
ancom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 436 | . 2 | |
2 | pm3.22 436 | . 2 | |
3 | 1, 2 | impbii 180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: ancomd 438 ancomsd 440 pm4.71r 612 pm5.32ri 619 pm5.32rd 621 anbi2ci 677 anbi12ci 679 an12 772 an32 773 an13 774 an42 798 andir 838 dfbi3 863 rbaib 873 rbaibr 874 3anrot 939 3ancoma 941 nancom 1290 excxor 1309 ancomsimp 1369 cador 1391 cadcoma 1395 cadcomb 1396 cad1 1398 exancom 1586 19.42 1880 eu1 2225 moaneu 2263 moanmo 2264 2eu3 2286 2eu6 2289 2eu7 2290 2eu8 2291 eq2tri 2412 r19.28av 2754 r19.29r 2756 r19.42v 2766 rexcomf 2771 rabswap 2791 euxfr2 3022 rmo4 3030 reu8 3033 rmo3 3134 incom 3449 difin2 3517 difin0ss 3617 ssunsn 3867 pw1in 4165 eluni1g 4173 elxpk2 4198 opkelcokg 4262 opkelimagekg 4272 cnvkxpk 4277 sikexlem 4296 dfpw12 4302 insklem 4305 unipw1 4326 addcass 4416 nnsucelrlem1 4425 nnsucelrlem2 4426 ltfinex 4465 ssfin 4471 dfop2lem1 4574 eqvinop 4607 opeq 4620 setconslem1 4732 setconslem2 4733 setconslem4 4735 elswap 4741 dfid3 4769 brinxp2 4836 brswap2 4861 cnvco 4895 dmuni 4915 dfima3 4952 elres 4996 dfres2 5003 imai 5011 rnuni 5039 cnvxp 5044 dmsnopg 5067 cnvsn 5074 rnco 5088 df2nd2 5112 fncnv 5159 fununi 5161 fnres 5200 fnopabg 5206 f1funfun 5264 dff1o2 5292 f1ocnvb 5299 eqfnfv3 5395 respreima 5411 fsn 5433 isoini 5498 opbr1st 5502 cnvswap 5511 swapf1o 5512 dmsi 5520 ndmovcom 5618 mptpreima 5683 trtxp 5782 brtxp 5784 elfix 5788 brimage 5794 oqelins4 5795 funsex 5829 pw1fnex 5853 clos1induct 5881 clos1is 5882 transex 5911 antisymex 5913 pmvalg 6011 elpmg 6014 mapval2 6019 enpw1lem1 6062 enmap2lem1 6064 enmap1lem1 6070 lecex 6116 ovmuc 6131 tcfnex 6245 addccan2nclem1 6264 nmembers1lem1 6269 nnc3n3p1 6279 spacvallem1 6282 spacis 6289 nchoicelem10 6299 nchoicelem11 6300 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |