New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > excxor | GIF version |
Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
excxor | ⊢ ((φ ⊻ ψ) ↔ ((φ ∧ ¬ ψ) ∨ (¬ φ ∧ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1305 | . 2 ⊢ ((φ ⊻ ψ) ↔ ¬ (φ ↔ ψ)) | |
2 | xor 861 | . 2 ⊢ (¬ (φ ↔ ψ) ↔ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) | |
3 | ancom 437 | . . 3 ⊢ ((ψ ∧ ¬ φ) ↔ (¬ φ ∧ ψ)) | |
4 | 3 | orbi2i 505 | . 2 ⊢ (((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ)) ↔ ((φ ∧ ¬ ψ) ∨ (¬ φ ∧ ψ))) |
5 | 1, 2, 4 | 3bitri 262 | 1 ⊢ ((φ ⊻ ψ) ↔ ((φ ∧ ¬ ψ) ∨ (¬ φ ∧ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 ⊻ wxo 1304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-xor 1305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |