NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  excxor GIF version

Theorem excxor 1309
Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
excxor ((φψ) ↔ ((φ ¬ ψ) φ ψ)))

Proof of Theorem excxor
StepHypRef Expression
1 df-xor 1305 . 2 ((φψ) ↔ ¬ (φψ))
2 xor 861 . 2 (¬ (φψ) ↔ ((φ ¬ ψ) (ψ ¬ φ)))
3 ancom 437 . . 3 ((ψ ¬ φ) ↔ (¬ φ ψ))
43orbi2i 505 . 2 (((φ ¬ ψ) (ψ ¬ φ)) ↔ ((φ ¬ ψ) φ ψ)))
51, 2, 43bitri 262 1 ((φψ) ↔ ((φ ¬ ψ) φ ψ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357   wa 358  wxo 1304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-xor 1305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator