NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  festino Unicode version

Theorem festino 2309
Description: "Festino", one of the syllogisms of Aristotelian logic. No is , and some is , therefore some is not . (In Aristotelian notation, EIO-2: PeM and SiM therefore SoP.) (Contributed by David A. Wheeler, 25-Nov-2016.)
Hypotheses
Ref Expression
festino.maj
festino.min
Assertion
Ref Expression
festino

Proof of Theorem festino
StepHypRef Expression
1 festino.min . 2
2 festino.maj . . . . . 6
32spi 1753 . . . . 5
43con2i 112 . . . 4
54anim2i 552 . . 3
65eximi 1576 . 2
71, 6ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wa 358  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator