New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > festino | Unicode version |
Description: "Festino", one of the syllogisms of Aristotelian logic. No is , and some is , therefore some is not . (In Aristotelian notation, EIO-2: PeM and SiM therefore SoP.) (Contributed by David A. Wheeler, 25-Nov-2016.) |
Ref | Expression |
---|---|
festino.maj | |
festino.min |
Ref | Expression |
---|---|
festino |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | festino.min | . 2 | |
2 | festino.maj | . . . . . 6 | |
3 | 2 | spi 1753 | . . . . 5 |
4 | 3 | con2i 112 | . . . 4 |
5 | 4 | anim2i 552 | . . 3 |
6 | 5 | eximi 1576 | . 2 |
7 | 1, 6 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wa 358 wal 1540 wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |