New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anim2i | Unicode version |
Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1i.1 |
Ref | Expression |
---|---|
anim2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | anim1i.1 | . 2 | |
3 | 1, 2 | anim12i 549 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sylanl2 632 sylanr2 634 andi 837 sbimi 1652 19.41 1879 ax12olem2 1928 exdistrf 1971 equs45f 1989 eupickb 2269 2eu1 2284 darii 2303 festino 2309 baroco 2310 r19.27av 2753 rspc2ev 2964 reu3 3027 difrab 3530 sfinltfin 4536 vfinspnn 4542 vinf 4556 fof 5270 fv3 5342 fvelimab 5371 fvopab4t 5386 dff2 5420 dffo5 5425 dff1o6 5476 oprabid 5551 ssoprab2i 5581 ndmovass 5619 ndmovdistr 5620 oqelins4 5795 |
Copyright terms: Public domain | W3C validator |