NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hbim Unicode version

Theorem hbim 1817
Description: If is not free in and , it is not free in . (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 3-Mar-2008.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
Hypotheses
Ref Expression
hbim.1
hbim.2
Assertion
Ref Expression
hbim

Proof of Theorem hbim
StepHypRef Expression
1 hbim.1 . 2
2 hbim.2 . . 3
32a1i 10 . 2
41, 3hbim1 1810 1
Colors of variables: wff setvar class
Syntax hints:   wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  19.23hOLD  1820  hbanOLD  1829  19.21hOLD  1840  cbv3hvOLD  1851  ax12olem5  1931  axi5r  2326  cleqh  2450  hbral  2663
  Copyright terms: Public domain W3C validator