New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cleqh | Unicode version |
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cleqh.1 | |
cleqh.2 |
Ref | Expression |
---|---|
cleqh |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2347 | . 2 | |
2 | ax-17 1616 | . . . 4 | |
3 | dfbi2 609 | . . . . 5 | |
4 | cleqh.1 | . . . . . . 7 | |
5 | cleqh.2 | . . . . . . 7 | |
6 | 4, 5 | hbim 1817 | . . . . . 6 |
7 | 5, 4 | hbim 1817 | . . . . . 6 |
8 | 6, 7 | hban 1828 | . . . . 5 |
9 | 3, 8 | hbxfrbi 1568 | . . . 4 |
10 | eleq1 2413 | . . . . . 6 | |
11 | eleq1 2413 | . . . . . 6 | |
12 | 10, 11 | bibi12d 312 | . . . . 5 |
13 | 12 | biimpd 198 | . . . 4 |
14 | 2, 9, 13 | cbv3h 1983 | . . 3 |
15 | 12 | equcoms 1681 | . . . . 5 |
16 | 15 | biimprd 214 | . . . 4 |
17 | 9, 2, 16 | cbv3h 1983 | . . 3 |
18 | 14, 17 | impbii 180 | . 2 |
19 | 1, 18 | bitr4i 243 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wceq 1642 wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: abeq2 2459 |
Copyright terms: Public domain | W3C validator |