| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ifpr | Unicode version | ||
| Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.) | 
| Ref | Expression | 
|---|---|
| ifpr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2868 | 
. 2
 | |
| 2 | elex 2868 | 
. 2
 | |
| 3 | ifcl 3699 | 
. . 3
 | |
| 4 | ifeqor 3700 | 
. . . 4
 | |
| 5 | elprg 3751 | 
. . . 4
 | |
| 6 | 4, 5 | mpbiri 224 | 
. . 3
 | 
| 7 | 3, 6 | syl 15 | 
. 2
 | 
| 8 | 1, 2, 7 | syl2an 463 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-if 3664 df-sn 3742 df-pr 3743 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |