New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elprg | Unicode version |
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . . 3 | |
2 | eqeq1 2359 | . . 3 | |
3 | 1, 2 | orbi12d 690 | . 2 |
4 | dfpr2 3750 | . 2 | |
5 | 3, 4 | elab2g 2988 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wo 357 wceq 1642 wcel 1710 cpr 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 |
This theorem is referenced by: elpr 3752 elpr2 3753 elpri 3754 eltpg 3770 ifpr 3775 prid1g 3826 |
Copyright terms: Public domain | W3C validator |