| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > iman | Unicode version | ||
| Description: Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
| Ref | Expression |
|---|---|
| iman |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 282 |
. . 3
| |
| 2 | 1 | imbi2i 303 |
. 2
|
| 3 | imnan 411 |
. 2
| |
| 4 | 2, 3 | bitri 240 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: annim 414 pm3.24 852 xor 861 nannan 1291 nic-mpALT 1437 nic-axALT 1439 difdif 3393 dfss4 3490 difin 3493 npss0 3590 ssdif0 3610 difin0ss 3617 inssdif0 3618 dfif2 3665 dfimak2 4299 |
| Copyright terms: Public domain | W3C validator |