New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difin0ss | Unicode version |
Description: Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
Ref | Expression |
---|---|
difin0ss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3564 | . 2 | |
2 | iman 413 | . . . . . 6 | |
3 | elin 3219 | . . . . . . . 8 | |
4 | eldif 3221 | . . . . . . . . 9 | |
5 | 4 | anbi1i 676 | . . . . . . . 8 |
6 | 3, 5 | bitri 240 | . . . . . . 7 |
7 | ancom 437 | . . . . . . 7 | |
8 | annim 414 | . . . . . . . 8 | |
9 | 8 | anbi2i 675 | . . . . . . 7 |
10 | 6, 7, 9 | 3bitr2i 264 | . . . . . 6 |
11 | 2, 10 | xchbinxr 302 | . . . . 5 |
12 | ax-2 7 | . . . . 5 | |
13 | 11, 12 | sylbir 204 | . . . 4 |
14 | 13 | al2imi 1561 | . . 3 |
15 | dfss2 3262 | . . 3 | |
16 | dfss2 3262 | . . 3 | |
17 | 14, 15, 16 | 3imtr4g 261 | . 2 |
18 | 1, 17 | sylbi 187 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wa 358 wal 1540 wceq 1642 wcel 1710 cdif 3206 cin 3208 wss 3257 c0 3550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-ss 3259 df-nul 3551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |