NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iman GIF version

Theorem iman 413
Description: Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.)
Assertion
Ref Expression
iman ((φψ) ↔ ¬ (φ ¬ ψ))

Proof of Theorem iman
StepHypRef Expression
1 notnot 282 . . 3 (ψ ↔ ¬ ¬ ψ)
21imbi2i 303 . 2 ((φψ) ↔ (φ → ¬ ¬ ψ))
3 imnan 411 . 2 ((φ → ¬ ¬ ψ) ↔ ¬ (φ ¬ ψ))
42, 3bitri 240 1 ((φψ) ↔ ¬ (φ ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  annim  414  pm3.24  852  xor  861  nannan  1291  nic-mpALT  1437  nic-axALT  1439  difdif  3393  dfss4  3490  difin  3493  npss0  3590  ssdif0  3610  difin0ss  3617  inssdif0  3618  dfif2  3665  dfimak2  4299
  Copyright terms: Public domain W3C validator