New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iman | GIF version |
Description: Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
Ref | Expression |
---|---|
iman | ⊢ ((φ → ψ) ↔ ¬ (φ ∧ ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 282 | . . 3 ⊢ (ψ ↔ ¬ ¬ ψ) | |
2 | 1 | imbi2i 303 | . 2 ⊢ ((φ → ψ) ↔ (φ → ¬ ¬ ψ)) |
3 | imnan 411 | . 2 ⊢ ((φ → ¬ ¬ ψ) ↔ ¬ (φ ∧ ¬ ψ)) | |
4 | 2, 3 | bitri 240 | 1 ⊢ ((φ → ψ) ↔ ¬ (φ ∧ ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: annim 414 pm3.24 852 xor 861 nannan 1291 nic-mpALT 1437 nic-axALT 1439 difdif 3393 dfss4 3490 difin 3493 npss0 3590 ssdif0 3610 difin0ss 3617 inssdif0 3618 dfif2 3665 dfimak2 4299 |
Copyright terms: Public domain | W3C validator |