New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > intnanr | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
intnan.1 |
Ref | Expression |
---|---|
intnanr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 | |
2 | simpl 443 | . 2 | |
3 | 1, 2 | mto 167 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: falantru 1338 rab0 3571 co02 5092 fnfreclem2 6318 |
Copyright terms: Public domain | W3C validator |