| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > intnan | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) | 
| Ref | Expression | 
|---|---|
| intnan.1 | 
 | 
| Ref | Expression | 
|---|---|
| intnan | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | intnan.1 | 
. 2
 | |
| 2 | simpr 447 | 
. 2
 | |
| 3 | 1, 2 | mto 167 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: bianfi 891 truanfal 1337 indifdir 3512 eqtfinrelk 4487 co01 5094 imadif 5172 xpnedisj 5514 2p1e3c 6157 nnc3n3p1 6279 | 
| Copyright terms: Public domain | W3C validator |