NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  intnanr GIF version

Theorem intnanr 881
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
Hypothesis
Ref Expression
intnan.1 ¬ φ
Assertion
Ref Expression
intnanr ¬ (φ ψ)

Proof of Theorem intnanr
StepHypRef Expression
1 intnan.1 . 2 ¬ φ
2 simpl 443 . 2 ((φ ψ) → φ)
31, 2mto 167 1 ¬ (φ ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  falantru  1338  rab0  3572  co02  5093  fnfreclem2  6319
  Copyright terms: Public domain W3C validator