| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > intnanr | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ φ |
| Ref | Expression |
|---|---|
| intnanr | ⊢ ¬ (φ ∧ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ φ | |
| 2 | simpl 443 | . 2 ⊢ ((φ ∧ ψ) → φ) | |
| 3 | 1, 2 | mto 167 | 1 ⊢ ¬ (φ ∧ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: falantru 1338 rab0 3572 co02 5093 fnfreclem2 6319 |
| Copyright terms: Public domain | W3C validator |