NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iota4an Unicode version

Theorem iota4an 4359
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4an  [.  ].

Proof of Theorem iota4an
StepHypRef Expression
1 iota4 4358 . 2  [.  ].
2 iotaex 4357 . . . 4
3 simpl 443 . . . . 5
43sbcth 3061 . . . 4  [.  ].
52, 4ax-mp 5 . . 3  [.  ].
6 sbcimg 3088 . . . 4  [.  ].  [.  ].  [.  ].
72, 6ax-mp 5 . . 3  [.  ].  [.  ].  [.  ].
85, 7mpbi 199 . 2  [.  ].  [.  ].
91, 8syl 15 1  [.  ].
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wcel 1710  weu 2204  cvv 2860   [.wsbc 3047  cio 4338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-uni 3893  df-iota 4340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator