| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > iota4an | GIF version | ||
| Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| iota4an | ⊢ (∃!x(φ ∧ ψ) → [̣(℩x(φ ∧ ψ)) / x]̣φ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iota4 4358 | . 2 ⊢ (∃!x(φ ∧ ψ) → [̣(℩x(φ ∧ ψ)) / x]̣(φ ∧ ψ)) | |
| 2 | iotaex 4357 | . . . 4 ⊢ (℩x(φ ∧ ψ)) ∈ V | |
| 3 | simpl 443 | . . . . 5 ⊢ ((φ ∧ ψ) → φ) | |
| 4 | 3 | sbcth 3061 | . . . 4 ⊢ ((℩x(φ ∧ ψ)) ∈ V → [̣(℩x(φ ∧ ψ)) / x]̣((φ ∧ ψ) → φ)) | 
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ [̣(℩x(φ ∧ ψ)) / x]̣((φ ∧ ψ) → φ) | 
| 6 | sbcimg 3088 | . . . 4 ⊢ ((℩x(φ ∧ ψ)) ∈ V → ([̣(℩x(φ ∧ ψ)) / x]̣((φ ∧ ψ) → φ) ↔ ([̣(℩x(φ ∧ ψ)) / x]̣(φ ∧ ψ) → [̣(℩x(φ ∧ ψ)) / x]̣φ))) | |
| 7 | 2, 6 | ax-mp 5 | . . 3 ⊢ ([̣(℩x(φ ∧ ψ)) / x]̣((φ ∧ ψ) → φ) ↔ ([̣(℩x(φ ∧ ψ)) / x]̣(φ ∧ ψ) → [̣(℩x(φ ∧ ψ)) / x]̣φ)) | 
| 8 | 5, 7 | mpbi 199 | . 2 ⊢ ([̣(℩x(φ ∧ ψ)) / x]̣(φ ∧ ψ) → [̣(℩x(φ ∧ ψ)) / x]̣φ) | 
| 9 | 1, 8 | syl 15 | 1 ⊢ (∃!x(φ ∧ ψ) → [̣(℩x(φ ∧ ψ)) / x]̣φ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∃!weu 2204 Vcvv 2860 [̣wsbc 3047 ℩cio 4338 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-uni 3893 df-iota 4340 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |