New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nanbi | Unicode version |
Description: Show equivalence between the bidirectional and the Nicod version. (Contributed by Jeff Hoffman, 19-Nov-2007.) |
Ref | Expression |
---|---|
nanbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.57 483 | . 2 | |
2 | df-nan 1288 | . . 3 | |
3 | df-nan 1288 | . . . 4 | |
4 | df-nan 1288 | . . . . 5 | |
5 | nannot 1293 | . . . . . 6 | |
6 | nannot 1293 | . . . . . 6 | |
7 | 5, 6 | anbi12i 678 | . . . . 5 |
8 | 4, 7 | xchbinxr 302 | . . . 4 |
9 | 3, 8 | anbi12i 678 | . . 3 |
10 | 2, 9 | xchbinx 301 | . 2 |
11 | dfbi3 863 | . 2 | |
12 | 1, 10, 11 | 3bitr4ri 269 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wb 176 wo 357 wa 358 wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 |
This theorem is referenced by: nic-dfim 1434 nic-dfneg 1435 |
Copyright terms: Public domain | W3C validator |