| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > nanbi | Unicode version | ||
| Description: Show equivalence between the bidirectional and the Nicod version. (Contributed by Jeff Hoffman, 19-Nov-2007.) | 
| Ref | Expression | 
|---|---|
| nanbi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm4.57 483 | 
. 2
 | |
| 2 | df-nan 1288 | 
. . 3
 | |
| 3 | df-nan 1288 | 
. . . 4
 | |
| 4 | df-nan 1288 | 
. . . . 5
 | |
| 5 | nannot 1293 | 
. . . . . 6
 | |
| 6 | nannot 1293 | 
. . . . . 6
 | |
| 7 | 5, 6 | anbi12i 678 | 
. . . . 5
 | 
| 8 | 4, 7 | xchbinxr 302 | 
. . . 4
 | 
| 9 | 3, 8 | anbi12i 678 | 
. . 3
 | 
| 10 | 2, 9 | xchbinx 301 | 
. 2
 | 
| 11 | dfbi3 863 | 
. 2
 | |
| 12 | 1, 10, 11 | 3bitr4ri 269 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 | 
| This theorem is referenced by: nic-dfim 1434 nic-dfneg 1435 | 
| Copyright terms: Public domain | W3C validator |