NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfnd Unicode version

Theorem nfnd 1791
Description: If in a context is not free in , it is not free in . (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.)
Hypothesis
Ref Expression
nfnd.1  F/
Assertion
Ref Expression
nfnd  F/

Proof of Theorem nfnd
StepHypRef Expression
1 nfnd.1 . 2  F/
2 nfnf1 1790 . . 3  F/ F/
3 df-nf 1545 . . . 4  F/
4 hbnt 1775 . . . 4
53, 4sylbi 187 . . 3  F/
62, 5nfd 1766 . 2  F/  F/
71, 6syl 15 1  F/
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4  wal 1540   F/wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  nfn  1793  nfand  1822  nfbidOLD  1833  nfexd  1854  19.9tOLD  1857  nfexd2  1973  cbvexd  2009  nfned  2613  nfneld  2614  nfrexd  2667
  Copyright terms: Public domain W3C validator