New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfnd | GIF version |
Description: If in a context x is not free in ψ, it is not free in ¬ ψ. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) |
Ref | Expression |
---|---|
nfnd.1 | ⊢ (φ → Ⅎxψ) |
Ref | Expression |
---|---|
nfnd | ⊢ (φ → Ⅎx ¬ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnd.1 | . 2 ⊢ (φ → Ⅎxψ) | |
2 | nfnf1 1790 | . . 3 ⊢ ℲxℲxψ | |
3 | df-nf 1545 | . . . 4 ⊢ (Ⅎxψ ↔ ∀x(ψ → ∀xψ)) | |
4 | hbnt 1775 | . . . 4 ⊢ (∀x(ψ → ∀xψ) → (¬ ψ → ∀x ¬ ψ)) | |
5 | 3, 4 | sylbi 187 | . . 3 ⊢ (Ⅎxψ → (¬ ψ → ∀x ¬ ψ)) |
6 | 2, 5 | nfd 1766 | . 2 ⊢ (Ⅎxψ → Ⅎx ¬ ψ) |
7 | 1, 6 | syl 15 | 1 ⊢ (φ → Ⅎx ¬ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfn 1793 nfand 1822 nfbidOLD 1833 nfexd 1854 19.9tOLD 1857 nfexd2 1973 cbvexd 2009 nfned 2613 nfneld 2614 nfrexd 2667 |
Copyright terms: Public domain | W3C validator |